数学建模图与网络模型ppt课件.ppt

数学建模图与网络模型ppt课件.ppt

ID:58780780

大小:724.00 KB

页数:86页

时间:2020-10-03

数学建模图与网络模型ppt课件.ppt_第1页
数学建模图与网络模型ppt课件.ppt_第2页
数学建模图与网络模型ppt课件.ppt_第3页
数学建模图与网络模型ppt课件.ppt_第4页
数学建模图与网络模型ppt课件.ppt_第5页
资源描述:

《数学建模图与网络模型ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、图与网络模型前言图论起源于18世纪。第一篇图论论文是瑞士数学家欧拉于1736年发表的“哥尼斯堡的七座桥”。图与网络是运筹学(OperationsResearch)中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。问题1:七桥问题在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。欧拉为了解决这个问题,采用了建立数学模型的方法。他将每一块陆地用一个点来代替,将每一座桥用连

2、接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。问题成为从任一点出发一笔画出七条线再回到起点。问题2(哈密顿环球旅行问题):十二面体的20个顶点代表世界上20个城市,能否从某个城市出发在十二面体上依次经过每个城市恰好一次最后回到出发点?哈密顿圈(环球旅行游戏)问题3(四色问题):对任何一张地图进行着色,两个共同边界的国家染不同的颜色,则只需要四种颜色就够了.问题4(关键路径问题):一项工程任务,大到建造一座大坝,一座体育中心,小至组装一台机床,一架电视机,都要包括许多工序.这些工序相互约束

3、,只有在某些工序完成之后,一个工序才能开始.即它们之间存在完成的先后次序关系,一般认为这些关系是预知的,而且也能够预计完成每个工序所需要的时间.这时工程领导人员迫切希望了解最少需要多少时间才能够完成整个工程项目,影响工程进度的要害工序是哪几个?图论的基本概念图论中的“图”并不是通常意义下的几何图形或物体的形状图,而是以一种抽象的形式来表达一些确定的事物之间的联系的一个数学系统.定义1一个有序二元组(V,E)称为一个图,记为G=(V,E),其中①V称为G的顶点集,V≠,其元素称为顶点或结点,简称点;②E称为G的边

4、集,其元素称为边,它联结V中的两个点,如果这两个点是无序的,则称该边为无向边,否则,称为有向边.如果V={v1,v2,…,vn}是有限非空点集,则称G为有限图或n阶图.如果E的每一条边都是无向边,则称G为无向图(如图1);如果E的每一条边都是有向边,则称G为有向图(如图2);否则,称G为混合图.图1图2并且常记V={v1,v2,…,vn},

5、V

6、=n;E={e1,e2,…,em}(ek=vivj),

7、E

8、=m.称点vi,vj为边vivj的端点.在有向图中,称点vi,vj分别为边vivj的始点和终点.对于一个图G=

9、(V,E),人们常用图形来表示它,称其为图解.凡是有向边,在图解上都用箭头标明其方向.例如,设V={v1,v2,v3,v4},E={v1v2,v1v3,v1v4,v2v3,v2v4,v3v4},则G=(V,E)是一个有4个顶点和6条边的图,G的图解如下图所示.一个图会有许多外形不同的图解,下面两个图表示同一个图G=(V,E)的图解.其中V={v1,v2,v3,v4},E={v1v2,v1v3,v1v4,v2v3,v2v4,v3v4}.今后将不计较这种外形上的差别,而用一个容易理解的、确定的图解去表示一个图.有边联

10、结的两个点称为相邻的点,有一个公共端点的边称为相邻边.边和它的端点称为互相关联.常用d(v)表示图G中与顶点v关联的边的数目,d(v)称为顶点v的度数.用N(v)表示图G中所有与顶点v相邻的顶点的集合.d(v1)=d(v3)=d(v4)=4,d(v2)=2.我们今后只讨论有限简单图:(1)顶点个数是有限的;(2)任意一条边有且只有两个不同的点与它相互关联;(3)若是无向图,则任意两个顶点最多只有一条边与之相联结;(4)若是有向图,则任意两个顶点最多只有两条边与之相联结.当两个顶点有两条边与之相联结时,这两条边的方

11、向相反.如果某个有限图不满足(2)(3)(4),可在某条边上增设顶点使之满足.定义2若将图G的每一条边e都对应一个实数F(e),则称F(e)为该边的权,并称图G为赋权图(网络),记为G=(V,E,F).定义3设G=(V,E)是一个图,v0,v1,…,vk∈V,且1≤i≤k,vi-1vi∈E,则称v0v1…vk是G的一条通路.如果通路中没有相同的边,则称此通路为道路.始点和终点相同的道路称为圈或回路.如果通路中既没有相同的边,又没有相同的顶点,则称此通路为路径,简称路.定义4任意两点均有通路的图称为连通图.定义5

12、连通而无圈的图称为树,常用T表示树.例一摆渡人欲将一只狼,一头羊,一篮菜从河西渡过河到河东.由于船小,一次只能带一物过河,并且狼与羊,羊与菜不能独处.给出渡河方法.解:用四维0-1向量表示(人,狼,羊,菜)在河西岸的状态(在河西岸则分量取1,否则取0),共有24=16种状态.在河东岸的状态类似记作.由题设,状态(0,1,1,0),(0,0,1,1),(0,1,1,1)是不

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。