欢迎来到天天文库
浏览记录
ID:57692885
大小:162.50 KB
页数:6页
时间:2020-09-01
《《平行线相交线》全章复习与巩固(基础)知识讲解.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《平行线相交线》全章复习与巩固(基础)知识讲解【学习目标】1.熟练掌握对顶角,邻补角及垂线的概念及性质,了解点到直线的距离与两平行线间的距离的概念;2.区别平行线的判定与性质,并能灵活运用;【知识网络】【要点梳理】要点一、相交线1.对顶角、邻补角两直线相交所成的四个角中存在几种不同关系,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角12∠1与∠2有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等即∠1=∠2邻补角有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线.邻补角互补即∠3+∠4=180°要点诠释:⑴对顶角是成对出现的
2、,对顶角是具有特殊位置关系的两个角.对顶角的特征:有公共顶点,角的两边互为反向延长线;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.邻补角的特征:有公共顶点,有一条公共边,另一边互为反向延长线.⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.2.斜线及垂线、点到直线的距离(1)斜线:如果两条直线的夹角为锐角,那么就说这两条直线互相斜交,其中一条直线叫做另一条
3、直线的斜线.(2)垂线:如果两条直线的夹角为直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.如图1,记作:AB⊥CD,垂足为O.图1要点诠释:要判断两条直线是否垂直,只需看它们相交所成的四个角中,是否有一个角是直角,两条线段垂直,是指这两条线段所在的直线垂直.(3)垂线的性质:垂线性质1:过一点有且只有一条直线与已知直线垂直(与平行公理相比较记)垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.(4)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,如图2
4、:PO⊥AB,点P到直线AB的距离是垂线段PO的长.要点诠释:垂线段PO是点P到直线AB所有线段中最短的一条.要点二、平行线1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线
5、外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图3,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)直线AB∥CD,在直线AB上任取一点G,过点G作CD的
6、垂线段GH,则垂线段GH的长度就是直线AB与CD间的距离.(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度,平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)如何理解“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.【典型例题】类型一、相交线1.如图,直线AB、CD、EF相交于点O,那么互为对顶角(平角除外)的角共有对,
7、它们分别是,共有对邻补角.【思路点拨】根据邻补角定义和对顶角定义,每一个顶点处有四个角,可以组成四对邻补角和两对对顶角,而本题图形中,三个顶点重叠在一起,所以再乘以3即可.【答案】6,∠AOC与∠BOD,∠AOF与∠BOE,∠COF与∠DOE,∠BOC与∠AOD,∠BOF与∠AOE,∠DOF与∠COE,12【解析】找对顶角或邻补角,先从某一个角开始,顺时针或逆时针旋转,这样做,既不漏也不重.【总结升华】两条直线相交得到的四个角中,共有2对对顶角,4对邻补角.举一反三:【变式】如图,下列各组角中,是对顶角的一组是( )A.∠1和∠2B.∠3和
8、∠5C.∠3和∠4D.∠1和∠5【答案】B.2.已知:如图,直线a、b、c两两相交,且a⊥b,∠1=2∠3,,求:∠4的度数.【答案与解析】解:∵a⊥b∴∠2=∠1
此文档下载收益归作者所有