资源描述:
《【解析版】2020届中考数学常考易错点 3.3.2《二次函数》.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数易错清单1.二次函数与方程、不等式的联系.【例1】 (2014·湖北孝感)抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b2-4ac<0;②a+b+c<0;③c-a=2;④方程ax2+bx+c-2=0有两个相等的实数根.其中正确结论的个数为( ).A.1个B.2个C.3个D.4个【解析】 由抛物线与x轴有两个交点得到b2-4ac>0;由抛物线顶点坐标得到抛物线的对称轴为直线-1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之
2、间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(-1,2)得a-b+c=2,由抛物线的对称轴为直线=1,得b=2a,所以c-a=2;根据二次函数的最大值问题,当x=-1时,二次函数有最大值为2,即只有x=1时,ax2+bx+c=2,所以说方程ax2+bx+c-2=0有两个相等的实数根.【答案】 ∵ 抛物线与x轴有两个交点,∴ b2-4ac>0,所以①错误.∵ 顶点为D(-1,2),∴ 抛物线的对称轴为直线x=-1.∵ 抛物线与x轴的一个交点A在点(-3,0)和(-2,0)之间,∴ 抛物线与x轴的另一个交点在点(0,0)和(1,0)
3、之间.∴ 当x=1时,y<0.∴ a+b+c<0,所以②正确.∵ 抛物线的顶点为D(-1,2),∴ a-b+c=2.∵ 抛物线的对称轴为直线=1,∴ b=2a.∴ a-2a+c=2,即c-a=2,所以③正确.∵ 当x=-1时,二次函数有最大值为2,即只有x=1时,ax2+bx+c=2,∴ 方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.故选C.【误区纠错】 本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线-;抛物线与y轴的交点坐标为(0,c);当b2-4a
4、c>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.2.用二次函数解决实际问题.【例2】 (2014·江苏泰州)某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A,B两组,采用不同工艺做降温对比实验,设降温开始后经过xmin时,A,B两组材料的温度分别为yA℃,yB℃,yA,yB与x的函数关系式分别为yA=kx+b,(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA,yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少
5、?(3)在06、法求一次函数解析式以及二次函数最值求法等知识,得出两种材料的函数关系式是解题关键.3.二次函数存在性问题的讨论.(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A'的坐标,判定点A'是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA'于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【解析】 (1)利用待定系数法求出抛物线的解析式;(2)首先求出对称点A'的坐标,然后代入抛物线解析式,即可判定点A'是否在抛物线上.本问关键在于求出A'的坐标.如
7、答图所示,作辅助线,构造一对相似三角形Rt△A'EA∽Rt△OAC,利用相似关系、对称性质、勾股定理,求出对称点A'的坐标;(3)本问为存在型问题.解题要点是利用平行四边形的定义,列出代数关系式求解.如答图所示,平行四边形的对边平行且相等,因此PM=AC=10;利用含未知数的代数式表示出PM的长度,然后列方程求解.【误区纠错】 本题是二次函数的综合题型,考查了二次函数的图象及性质、待定系数法、相似、平行四边形、勾股定理、对称等知识点,涉及考点较多,有一定的难度.第(2)问的要点是求对称点A'的坐标,第(3)问的要点是利用平行四边形的定义列方程求解.
8、名师点拨1.能通过画二次函数图象求一元二次方程的近似解,能说明二次函数与一元二次方程的联系与区别.2.会借助函数思想及图象