遗传算法简述课件.ppt

遗传算法简述课件.ppt

ID:56967301

大小:324.50 KB

页数:79页

时间:2020-07-22

遗传算法简述课件.ppt_第1页
遗传算法简述课件.ppt_第2页
遗传算法简述课件.ppt_第3页
遗传算法简述课件.ppt_第4页
遗传算法简述课件.ppt_第5页
资源描述:

《遗传算法简述课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、遗传算法(GeneticAlgorithm)●遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。●最初由美国Michigan大学J.Holland教授于1975年首先提出来,并出版了颇有影响的专著《AdaptationinNaturalandArtificialSystems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。1.1基本概念1.个体与种群●个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼

2、,一个个体也就是搜索空间中的一个点。●种群(population)就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。2.适应度与适应度函数●适应度(fitness)就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。●适应度函数(fitnessfunction)就是问题中的全体个体与其适应度之间的一个对应关系。它一般是一个实值函数。该函数就是遗传算法中指导搜索的评价函数。3.染色体与基因染色体(chromosome)就是问题中个体的某种字符串形式的编码表示。字符串中的字符也就称为基因(gene)。例如:个体染

3、色体9----1001(2,5,6)----0101011104.遗传操作亦称遗传算子(geneticoperator),就是关于染色体的运算。遗传算法中有三种遗传操作:●选择-复制(selection-reproduction)●交叉(crossover,亦称交换、交配或杂交)●变异(mutation,亦称突变)选择-复制通常做法是:对于一个规模为N的种群S,按每个染色体xi∈S的选择概率P(xi)所决定的选中机会,分N次从S中随机选定N个染色体,并进行复制。这里的选择概率P(xi)的计算公式为交叉就是互换两个染色体某些位上的基因。s1′=01000101,s2′=1

4、0011011可以看做是原染色体s1和s2的子代染色体。例如,设染色体s1=01001011,s2=10010101,交换其后4位基因,即变异就是改变染色体某个(些)位上的基因。例如,设染色体s=11001101将其第三位上的0变为1,即s=11001101→11101101=s′。s′也可以看做是原染色体s的子代染色体。1.2基本遗传算法遗传算法基本流程框图生成初始种群计算适应度选择-复制交叉变异生成新一代种群终止?结束算法中的一些控制参数:■种群规模■最大换代数■交叉率(crossoverrate)就是参加交叉运算的染色体个数占全体染色体总数的比例,记为Pc,取值范围

5、一般为0.4~0.99。■变异率(mutationrate)是指发生变异的基因位数所占全体染色体的基因总位数的比例,记为Pm,取值范围一般为0.0001~0.1。基本遗传算法步1在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;步2随机产生U中的N个个体s1,s2,…,sN,组成初始种群S={s1,s2,…,sN},置代数计数器t=1;步3计算S中每个个体的适应度f();步4若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。步5按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次

6、,然后将复制所得的N个染色体组成群体S1;步6按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2;步7按变异率Pm所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3;步8将群体S3作为新一代种群,即用S3代替S,t=t+1,转步3;1.3遗传算法应用举例例4.1利用遗传算法求解区间[0,31]上的二次函数y=x2的最大值。y=x231XY分析原问题可转化为在区间[0,31]中搜索能使y取最大值的点a的问题。那么,[0,31]中的点x就是

7、个体,函数值f(x)恰好就可以作为x的适应度,区间[0,31]就是一个(解)空间。这样,只要能给出个体x的适当染色体编码,该问题就可以用遗传算法来解决。解(1)设定种群规模,编码染色体,产生初始种群。将种群规模设定为4;用5位二进制数编码染色体;取下列个体组成初始种群S1:s1=13(01101),s2=24(11000)s3=8(01000),s4=19(10011)(2)定义适应度函数,取适应度函数:f(x)=x2(3)计算各代种群中的各个体的适应度,并对其染色体进行遗传操作,直到适应度最高的个体(即31(11111))

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。