欢迎来到天天文库
浏览记录
ID:56580355
大小:3.47 MB
页数:63页
时间:2020-06-28
《沪科版九年级上册数学_全册教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、XX中学电子教案模板第23单元.第6课时.总第18课课题 23.2相似三角形的判定(一)教学目标1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.2.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.重点难点1.重点:相似三角形的定义与三角形相似的预备定理.2.难点:
2、三角形相似的预备定理的应用.教法教具 复习引入法多媒体课时安排 一课时课前准备 提前预习新课内容复习全等三角形的知识教学过1.复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC与△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,且.我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比.反之如果△ABC∽△A′B′C′,则有∠A=∠A′,∠B=∠B′,∠C=∠C′,且.(3)问题:如果k=1,这两个三角形有怎样的关系?程2、引导学生探索与证明.3.
3、【归纳】三角形相似的预备定理平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.4、例题讲解例1(补充)如图△ABC∽△DCA,AD∥BC,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6.求AD、DC的长.分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD与DC的长.解:略(AD=3,DC=5)例2(补充)如图,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的
4、长.分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性质,有,又由AD=EC可求出AD的长,再根据求出DE的长.解:略().5、课堂练习1.(选择)下列各组三角形一定相似的是()A.两个直角三角形B.两个钝角三角形C.两个等腰三角形D.两个等边三角形2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有()A.1对B.2对C.3对D.4对3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.(CD=10)板书设计一、 复习三、课堂练习二、新课讲授四、课堂小结作业设计 课后练习1.如图,△AB
5、C∽△AED,其中DE∥BC,写出对应边的比例式.2.如图,△ABC∽△AED,其中∠ADE=∠B,写出对应边的比例式.3.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.教学反思 XX中学电子教案模板第23单元.第7课时.总第19课课题 23.2相似三角形的判定(二)教学目标1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、
6、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题.重点难点1.重点:掌握两种判定方法,会运用两种判定方法判定两个三角形相似.2.难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似教法教具 问题探究法多媒体课时安排 一课时课前准备 复习三角形全等的内容预习本节课内容教学过1.复习提问:(1)两个三角形全等有哪些判定方法?(2)我们学习过哪些判定三角形相似的方
7、法?(3)全等三角形与相似三角形有怎样的关系?(4)如图,如果要判定△ABC与△A’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系?有我们前面学过的预备定理知道:三角形相似的判定方法1如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。2.程(1)提出问题:首先,由三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?(2)带领学生画图探究;(3)【归纳】三角形相似的判定方法2如果两个三角形的三组对应边的比相等,那么这两个三角形相似
8、.3.(1)提出问题:怎样证明这个命题是正确的呢?(2)教师带领学生探求证明方法.4.用上面同样的方法进一步探究三角形相似的条件:(1)提出问题:由三角形全等的SAS判定方法,我
此文档下载收益归作者所有