小学数学学习的思想方法.doc

小学数学学习的思想方法.doc

ID:56054297

大小:31.00 KB

页数:3页

时间:2020-06-19

小学数学学习的思想方法.doc_第1页
小学数学学习的思想方法.doc_第2页
小学数学学习的思想方法.doc_第3页
资源描述:

《小学数学学习的思想方法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、小学数学学习的思想方法回龙学校教师:谢璐数学学习不仅可以使学生获得参与社会生活必不可少的知识和能力,而且能有效地提高学生的逻辑推理能力,进而奠定发展更高素质的基础。因此,培养学生良好的数学思维能力是教学数学要达到的目标之一。教材中系统而有步骤地渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式采用生动有趣的事例呈现出来。一、数形结合的思想方法数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文

2、字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。例如,在低段的学习中我们常用数图结合的解决问题,在中高段我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。二、集合的思想方法把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把

3、一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如在四年级上册《四边形》中,长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。下册《三角形》中三角形集合包

4、含等腰三角形,等腰三角形包含锐角三角形、直角三角形、钝角三角形集合。三、对应的思想方法对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。如人教版一年级上册教材中,《比多少》分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。四、函数的思想方法恩格斯说:“数学中的转折点是笛卡

5、儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,和差积商的变化规律都较好的渗透了函数的思

6、想,其目的都在于帮助学生形成初步的函数概念。五、极限的思想方法极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。现行小学教材中有许多处注意了极限思想的渗透。在“自然数”中自然数是数不完的,是无限的。在直线、射线、平行线的教学时,可让学生体会直线的两端是可以无限延长的。射线的一端可以无限延长。六、化归的思想方法化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解

7、决的问题中去,以求得解决。客观事物是不断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。如:在教学平面图形求积公式中,就以化归思想、转化思想等为理论

8、武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。七、归纳的思想方法在研究一般性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。