二元一次不等式组与简单的线性规划问题课件1(苏教版必修5).ppt

二元一次不等式组与简单的线性规划问题课件1(苏教版必修5).ppt

ID:55600652

大小:344.00 KB

页数:21页

时间:2020-05-20

二元一次不等式组与简单的线性规划问题课件1(苏教版必修5).ppt_第1页
二元一次不等式组与简单的线性规划问题课件1(苏教版必修5).ppt_第2页
二元一次不等式组与简单的线性规划问题课件1(苏教版必修5).ppt_第3页
二元一次不等式组与简单的线性规划问题课件1(苏教版必修5).ppt_第4页
二元一次不等式组与简单的线性规划问题课件1(苏教版必修5).ppt_第5页
资源描述:

《二元一次不等式组与简单的线性规划问题课件1(苏教版必修5).ppt》由会员上传分享,免费在线阅读,更多相关内容在PPT专区-天天文库

1、简单线性规划(2)则用不等式可表示为:解:此平面区域在x-y=0的右下方,x-y≥0它又在x+2y-4=0的左下方,x+2y-4≤0它还在y+2=0的上方,y+2≥0Yox4-2x-y=0y+2=0x+2y-4=021,求由三直线x-y=0;x+2y-4=0及y+2=0所围成的平面区域所表示的不等式。应该注意的几个问题:1、若不等式中不含0,则边界应画成虚线,2、画图时应非常准确,否则将得不到正确结果。3、熟记“直线定界、特殊点定域”方法的内涵。否则应画成实线。xyo可行域上的最优解第二节一.复习回顾1.在同一坐标系上作出

2、下列直线:2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7xYo2.作出下列不等式组的所表示的平面区域55x=1x-4y+3=03x+5y-25=01ABCC:(1.00,4.40)A:(5.00,2.00)B:(1.00,1.00)Oxy问题1:x有无最大(小)值?问题2:y有无最大(小)值?问题3:2x+y有无最大(小)值?二.提出问题把上面两个问题综合起来:设z=2x+y,求满足时,求z的最大值和最小值.55x=1x-4y+3=03x+5y-25=01ABCC:(1.00,4.40)A:(5.0

3、0,2.00)B:(1.00,1.00)Oxy直线L越往右平移,t随之增大.以经过点A(5,2)的直线所对应的t值最大;经过点B(1,1)的直线所对应的t值最小.设z=2x+y,求满足时,求z的最大值和最小值.线性目标函数线性约束条件线性规划问题任何一个满足不等式组的(x,y)可行解可行域所有的最优解有关概念由x,y的不等式(或方程)组成的不等式组称为x,y的约束条件。关于x,y的一次不等式或方程组成的不等式组称为x,y的线性约束条件。欲达到最大值或最小值所涉及的变量x,y的解析式称为目标函数。关于x,y的一次目标函数称为

4、线性目标函数。求线性目标函数在线性约束条件下的最大值或最小值问题称为线性规划问题。满足线性约束条件的解(x,y)称为可行解。所有可行解组成的集合称为可行域。使目标函数取得最大值或最小值的可行解称为最优解。三、课堂练习(1)已知求z=2x+y的最大值和最小值。551Oxyy-x=0x+y-1=01-1y+1=0A(2,-1)B(-1,-1)练习2、已知求z=3x+5y的最大值和最小值。551Oxy1-15x+3y=15X-5y=3y=x+1A(-2,-1)B(3/2,5/2)解线性规划问题的步骤:(2)移:在线性目标函数所表

5、示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;(3)求:通过解方程组求出最优解;(4)答:作出答案。(1)画:画出线性约束条件所表示的可行域;一、引例:某工厂生产甲、乙两种产品,生产1t甲种产品需要A种原料4t、B种原料12t,产生的利润为2万元;生产1t乙种产品需要A种原料1t、B种原料9t,产生的利润为1万元。现有库存A种原料10t、B种原料60t,如何安排生产才能使利润最大?几个结论:1、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。2、求线性目标函数的最优解

6、,要注意分析线性目标函数所表示的几何意义 ——在y轴上的截距或其相反数。A种原料B种原料利润甲种产品4122乙种产品191现有库存1060在关数据列表如下:设生产甲、乙两种产品的吨数分别为x、y利润何时达到最大?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。