小学数学应用题解法归类九.doc

小学数学应用题解法归类九.doc

ID:54729434

大小:38.00 KB

页数:4页

时间:2020-04-20

小学数学应用题解法归类九.doc_第1页
小学数学应用题解法归类九.doc_第2页
小学数学应用题解法归类九.doc_第3页
小学数学应用题解法归类九.doc_第4页
资源描述:

《小学数学应用题解法归类九.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、小学数学应用题解法归类九25构图布数问题【含义】这是一种数学游戏,也是现实生活中常用的数学问题。所谓“构图”,就是设计出一种图形;所谓“布数”,就是把一定的数字填入图中。“构图布数”问题的关键是要符合所给的条件。【数量关系】根据不同题目的要求而定。【解题思路和方法】通常多从三角形、正方形、圆形和五角星等图形方面考虑。按照题意来构图布数,符合题目所给的条件。例1十棵树苗子,要栽五行子,每行四棵子,请你想法子。解符合题目要求的图形应是一个五角星。4×5÷2=10因为五角星的5条边交叉重复,应减去一半。例2九棵树苗子,要栽十行子,每行三棵子,请你想法子。解符合题目要求的图形是两个倒

2、立交叉的等腰三角形,一个三角形的顶点在另一个三角形底边的中线上。例3九棵树苗子,要栽三行子,每行四棵子,请你想法子。解符合题目要求的图形是一个三角形,每边栽4棵树,三个顶点上重复应减去,正好9棵。4×3-3=9例4把12拆成1到7这七个数中三个不同数的和,有几种写法?请设计一种图形,填入这七个数,每个数只填一处,且每条线上三个数的和都等于12。解共有五种写法,即12=1+4+712=1+5+612=2+3+712=2+4+612=3+4+5在这五个算式中,4出现三次,其余的1、2、3、5、6、7各出现两次,因此,4应位于三条线的交点处,其余数都位于两条线的交点处。据此,我们可

3、以设计出以下三种图形:26幻方问题【含义】把n×n个自然数排在正方形的格子中,使各行、各列以及对角线上的各数之和都相等,这样的图叫做幻方。最简单的幻方是三级幻方。【数量关系】每行、每列、每条对角线上各数的和都相等,这个“和”叫做“幻和”。三级幻方的幻和=45÷3=15五级幻方的幻和=325÷5=65【解题思路和方法】首先要确定每行、每列以及每条对角线上各数的和(即幻和),其次是确定正中间方格的数,然后再确定其它方格中的数。例1把1,2,3,4,5,6,7,8,9这九个数填入九个方格中,使每行、每列、每条对角线上三个数的和相等。解幻和的3倍正好等于这九个数的和,所以幻和为(1+

4、2+3+4+5+6+7+8+9)÷3=45÷3=15九个数在这八条线上反复出现构成幻和时,每个数用到的次数不全相同,最中心的那个数要用到四次(即出现在中行、中列、和两条对角线这四条线上),四角的四个数各用到三次,其余的四个数各用到两次。看来,用到四次的“中心数”地位重要,宜优先考虑。设“中心数”为Χ,因为Χ出现在四条线上,而每条线上三个数之和等于15,所以(1+2+3+4+5+6+7+8+9)+(4-1)Χ=15×4276951438即45+3Χ=60所以Χ=5接着用奇偶分析法寻找其余四个偶数的位置,它们分别在四个角,再确定其余四个奇数的位置,它们分别在中行、中列,进一步尝试

5、,容易得到正确的结果。例2把2,3,4,5,6,7,8,9,10这九个数填到九个方格中,使每行、每列、以及对角线上的各数之和都相等。解只有三行,三行用完了所给的9个数,所以每行三数之和为(2+3+4+5+6+7+8+9+10)÷3=18假设符合要求的数都已经填好,那么三行、三列、两条对角线共8行上的三个数之和都等于18,我们看18能写成哪三个数之和:最大数是10:18=10+6+2=10+5+3最大数是9:18=9+7+2=9+6+3=9+5+4最大数是8:18=8+7+3=8+6+4最大数是7:18=7+6+5刚好写成8个算式。首先确定正中间方格的数。第二横行、第二竖行、两

6、个斜行都用到正中间方格的数,共用了四次。观察上述8个算式,只有6被用了4次,所以正中间方格中应填6。9274685103然后确定四个角的数。四个角的数都用了三次,而上述8个算式中只有9、7、5、3被用了三次,所以9、7、5、3应填在四个角上。但还应兼顾两条对角线上三个数的和都为18。最后确定其它方格中的数。如图。27抽屉原则问题【含义】把3只苹果放进两个抽屉中,会出现哪些结果呢?要么把2只苹果放进一个抽屉,剩下的一个放进另一个抽屉;要么把3只苹果都放进同一个抽屉中。这两种情况可用一句话表示:一定有一个抽屉中放了2只或2只以上的苹果。这就是数学中的抽屉原则问题。【数量关系】基本

7、的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。抽屉原则可以推广为:如果有m个抽屉,有k×m+r(0<r≤m)个元素那么至少有一个抽屉中要放(k+1)个或更多的元素。通俗地说,如果元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。【解题思路和方法】(1)改造抽屉,指出元素;(2)把元素放入(或取出)抽屉;(3)说明理由,得出结论。例1育才小学有367个1999年出生的学生,那么其中至少有几个学生的生日是同一天的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。