“半角”模型旋转变换几何练习.docx

“半角”模型旋转变换几何练习.docx

ID:53246332

大小:1.07 MB

页数:17页

时间:2020-04-02

“半角”模型旋转变换几何练习.docx_第1页
“半角”模型旋转变换几何练习.docx_第2页
“半角”模型旋转变换几何练习.docx_第3页
“半角”模型旋转变换几何练习.docx_第4页
“半角”模型旋转变换几何练习.docx_第5页
资源描述:

《“半角”模型旋转变换几何练习.docx》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、考点五:角含半角、等腰三角形的(绕顶点)旋转重合法核心母题如图,在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,求证:EF=BE+DF.变式一:如图,E、F分别是边长为1的正方形ABCD的边BC、CD上的点,若△ECF的周长是2,求∠EAF的度数?变式二:如图,在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°,AG⊥EF,求证:AG=AB.综合:在正方形ABCD中,若M、N分别在边BC、CD上移动,且满足MN=BM+DN,求证:①.∠MAN=②.③.AM、AN分别平分∠BMN和∠DNM.练习1、如图,在四边形ABC

2、D中,AB=BC,∠A=∠C=90°,∠B=135°,K、N分别是AB、BC上的点,若△BKN的周长是AB的2倍,求∠KDN的度数?2、已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.3、如图,在

3、四边形ABCD中,AB=AD,,∠B+∠D=180°,E、F分别是边BC、CD上的点,且2∠EAF=∠BAD,(1)求证:EF=BE+FD(2)如果E、F分别是边BC、CD延长线上的点,其他条件不变,结论是否仍然成立?说明理由。5、如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°求证:AD平分∠CDE.6、如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积.7、如图1.在四边形ABCD中.AB=AD,∠B+∠D=180゜,E、F分别是边BC、CD上的点,且∠BAD=2∠

4、EAF.(1)求证:EF=BE+DF;(2)在(1)问中,若将△AEF绕点A逆时针旋转,当点E、F分别运动到BC、CD延长线上时,如图2所示,试探究EF、BE、DF之间的数量关系.8、如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PC=2,PB=1.求∠BPC的度数半角模型条件:思路:(1)、延长其中一个补角的线段(延长CD到E,使ED=BM,连AE或延长CB到F,使FB=DN,连AF)结论:①MN=BM+DN②③AM、AN分别平分∠BMN和∠DNM(2)对称(翻折)思路:分别将△ABM和△ADN以AM和AN为对称轴翻折

5、,但一定要证明M、P、N三点共线.(∠B+∠D=且AB=AD)例题应用:例1、在正方形ABCD中,若M、N分别在边BC、CD上移动,且满足MN=BM+DN,求证:①.∠MAN=②.③.AM、AN分别平分∠BMN和∠DNM.思路同上略.例1拓展:在正方形ABCD中,已知∠MAN=,若M、N分别在边CB、DC的延长线上移动,①.试探究线段MN、BM、DN之间的数量关系.②.求证:AB=AH.提示如图:例2.在四边形ABCD中,∠B+∠D=,AB=AD,若E、F分别在边BC、CD上,且满足EF=BE+DF.求证:提示:练习巩固:如图,在四边形ABCD中,∠B=∠

6、D=,AB=AD,若E、F分别在边BC、CD上的点,且.求证:EF=BE+DF.提示:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。