5、意.(3)由对数函数的性质可知,当x-2=1,即x=3时,y=-6,即函数恒过定点(3,-6).答案:(1)A(2)D(3)(3,-6)一二三三、反函数1.函数y=log2x与y=2x的定义域和值域之间有什么关系?其图象之间是什么关系?提示:函数y=log2x与y=2x的定义域和值域之间是互换的,两者的图象关于直线y=x对称.2.填空对数函数y=logax(a>0且a≠1)和指数函数y=ax(a>0且a≠1)互为反函数.它们的图象关于直线y=x对称.一二三3.做一做(2)函数g(x)=log8x的反函数是.(3)判断正误:若函数y=f(x)的
6、图象经过点(a,b),则其反函数的图象过(b,a).()探究一探究二探究三探究四探究五对数函数的概念例1(1)已知对数函数f(x)=(m2-3m+3)·logmx,则m=.①求f(x)的解析式;②解方程f(x)=2.分析:(1)根据对数函数的形式定义确定参数m所满足的条件求解即可;(2)根据已知设出函数解析式,代入点的坐标求出对数函数的底数;然后利用指对互化解方程.思想方法随堂演练探究一探究二探究三探究四探究五(1)解析:由对数函数的定义可得m2-3m+3=1,即m2-3m+2=0,也就是(m-1)(m-2)=0,解得m=1或m=2.又因为m
7、>0,且m≠1,所以m=2.答案:2(2)解:①由题意设f(x)=logax(a>0,且a≠1),解得a=16,故f(x)=log16x.②方程f(x)=2,即log16x=2,所以x=162=256.思想方法随堂演练探究一探究二探究三探究四探究五反思感悟1.对数函数是一个形式定义:2.对数函数解析式中只有一个参数a,用待定系数法求对数函数解析式时只须一个条件即可求出.思想方法随堂演练探究一探究二探究三探究四探究五变式训练1(1)若函数f(x)=log(a+1)x+(a2-2a-8)是对数函数,则a=.(2)点A(8,-3)和B(n,2)在同
8、一个对数函数图象上,则n=.(2)设对数函数为f(x)=logax(a>0,且a≠1).则由题意可得f(8)=-3,即loga8=-3,思想方法随堂演练探究一探究二探究三探究四探究五思想方法随堂演练与对数函数有关的定义域、值域问题例2(1)函数f(x)=ln(x2-x)的定义域为()A.(-∞,0)∪(1,+∞)B.(-∞,0]∪[1,+∞)C.(0,1)D.[0,1](2)已知函数f(x)=的值域为[-1,1],则函数f(x)的定义域是.探究一探究二探究三探究四探究五思想方法随堂演练解析:(1)由题意得x2-x>0,解得x>1或x<0,故函
9、数的定义域是(-∞,0)∪(1,+∞).故选A.探究一探究二探究三探究四探究五思想方法随堂演练反思感悟定义域问题注意事项(1)要遵循以前已学习过的求定义域的方法,如