欢迎来到天天文库
浏览记录
ID:52175863
大小:3.13 MB
页数:8页
时间:2020-03-23
《基于小波-原子分解的超短期风电出力预测模型.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第37卷第10期仪器仪表学报Vol37No102016年10月ChineseJournalofScientificInstrumentOct.2016基于小波原子分解的超短期风电出力预测模型曲正伟,张坤,王云静,王雅坤,崔志强(燕山大学电力电子节能与传动控制河北省重点实验室秦皇岛066004)摘要:为提高含风电场电网经济调度能力以及降低电力系统规划决策的保守性,提出了基于小波原子分解(WDAD)的风电出力超短期预测模型。该模型采用小波分解(WD)作为前置环节,以基于原子表达式的自预测和基于最小二乘支持向量机(LS
2、SVM)的残余分量预测为基础构建原子分解(AD)预测模型,分别对风电出力的高低频分量进行预测,并将结果相加得到最终预测值。AD分解过程由衰减线性和Gabor原子库交替分解完成,可自适应匹配不同类型分量。同时,本文提出将细菌群体趋药性和正交匹配追踪算法相结合(BCCOMP)优化的原子分解法,进一步增强了原子分解能力。实际风电场算例验证了所提方法的自适应性、快速性及有效性。关键词:风电出力预测;小波原子分解;最小二乘支持向量机;正交匹配追踪;细菌群体趋药性中图分类号:TM614TH17文献标识码:A国家标准学科分类代码:47
3、0.4017UltrashorttermwindpoweroutputforecastmodelbasedonwaveletdecompositionandatomicdecompositionQuZhengwei,ZhangKun,WangYunjing,WangYakun,CuiZhiqiang(KeyLaboratoryofPowerElectronicsforEnergyConservationandMotorDriveofHebeiProvince,YanshanUniversity,Qinhuangdao066
4、004,China)Abstract:Inordertoimprovetheeconomicschedulingabilityofthepowergridincludingwindpowerplantandreducetheconservatismofpowersystemplanninganddecisionmaking,anultrashorttermwindpoweroutputforecastmodelisproposedbasedonwaveletdecompositionandatomicdecomposit
5、ion(WDAD)inthispaper.Inthemodel,waveletdecomposition(WD)isusedastheprepositivestep.Theselfpredictionbasedonatomicexpressionandtheresidualcomponentpredictionbasedonleastsquaressupportvectormachine(LSSVM)aretakenasthefoundationtoestablishtheatomicdecompositionpred
6、ictionmodel.Then,thehighandlowfrequencycomponentsofwindpoweroutputarepredicted.Atlast,thetworesultsareaddedtogethertogetthefinalpredictedvalue.TheatomicdecompositionprocessiscompletedthroughthealternativedecompositionofdampedlinerlibraryandGaboratomiclibrary,whichc
7、anmatchdifferenttypesofcomponentsadaptively.Inaddition,inthispaperthebacterialcolonychemotaxis(BCC)andorthogonalmatchingpursuit(OMP)algorithmarecombinedastheBCCOMPoptimizationalgorithmtooptimizeatomicsparsedecomposition,whichenhancestheatomicdecompositionabilityfu
8、rther.Theproposedmethodisverifiedbyactualwindpowerplantexample,andsimulationresultsverifytheadaptability,rapidityandeffectivenessoftheproposedmet
此文档下载收益归作者所有