通过间接蒸发冷却降低到空气湿球温度以下.doc

通过间接蒸发冷却降低到空气湿球温度以下.doc

ID:51835673

大小:269.04 KB

页数:15页

时间:2020-03-16

通过间接蒸发冷却降低到空气湿球温度以下.doc_第1页
通过间接蒸发冷却降低到空气湿球温度以下.doc_第2页
通过间接蒸发冷却降低到空气湿球温度以下.doc_第3页
通过间接蒸发冷却降低到空气湿球温度以下.doc_第4页
通过间接蒸发冷却降低到空气湿球温度以下.doc_第5页
资源描述:

《通过间接蒸发冷却降低到空气湿球温度以下.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、通过间接蒸发冷却降低到空气湿球温度以下作者:AlaHasan*摘要:间接蒸发冷却是一个用于冷却空气的可持续方法。限制蒸发冷却器广泛使用的主要因素是过程的极限温度,即室外空气的湿球温度。在本文中,介绍了一种通过间接蒸发冷却产出空气温度低于湿球温度以下的方法,而不是通过蒸汽压缩机械机组。主要的方法是使产出空气分流作为工作空气进入冷却器,即在最后冷却及送入房间之前进行间接预冷。从而开发了一种用于热质交换过程的模型。四种类型的冷却器研究如下:三个两级冷却器(一个逆流,一个并流以及一个并流-再生流结合)和一个单极逆流再生冷却器。结果表明,这种方法用于间接蒸发冷却能

2、够产出低于室外空气湿球温度的空气。对于此过程来说,极限温度是室外空气露点温度。对于研究的两级逆流,并流和并流-再生结合的冷却器的湿球效率(Ewb)分别为1.26,1.09及1.31,而对于单极逆流再生冷却器是1.16。这种方法扩展了蒸发冷却器在建筑以及其他的工业领域的应用潜能。关键词:间接蒸发冷却湿球温度以下接近露点1.引言建筑业占世界总能源消耗的主要部分。它有最大的提高能源利用效率的潜力。冷却能源是一个重要的能源,由于室内舒适性需求的增长和全球变暖的影响,冷却需求持续增加。蒸发冷却是一个有效的和经济上可行的方法。因为工作流体是空气和水,这是一个可持续的

3、解决方法。此外,蒸发冷却不仅限于建筑冷却,也可以应用在许多其他的农业和工业[1]。然而,常规的蒸发冷却具有严重的热力学限制:过程的极限温度是室外空气的湿球温度,在实际中得到的温度甚至更高。由于这个原因,在许多情况下,冷却流体不能达到合适的低温,因此蒸发冷却的利用潜能是有限的。因此,新的方法和技术是产生所需的冷却能源。通过蒸发冷却降低到空气湿球温度以下解决了这种限制,因为它能使冷却温度低于室外空气湿球温度。有几项研究通过蒸发冷却和许多创新的想法实现降低到空气湿球温度以下。然而,大多数暖通工程师不知这些方法,以及相关的结果没有共同使用。Crum[2]等人表明

4、,通过使用多级间接蒸发冷却和冷却塔热交换结合可以实现。他们指出在空调应用方面,这种冷却塔热交换结合形式具有很大的热潜能。它可以产生较低的入口空气温度,具有较高的冷却能力。他们指出在空调运行期间,该设备的性能系数(COP)可以达到75。Hsu[3]等人通过理论和实验研究,这两个闭环湿表面热交换器配置通过逆流和叉流可以产生低于湿球温度的冷却。通过闭环逆流式冷却器装置实验测量,他们指出对于逆流闭环装置,该最大的湿球效率为1.3,干通道的传质单元数(NTU)为10,而对于叉流闭环装置,在相同的最大效率下,NTU可以达到15。对这两台装置,当送入房间的空气比例从零

5、增加到60%时,效率减少了10%。Boxem[4]等人提出了一个间接蒸发冷却器模型:两侧带有百叶窗的紧凑式逆流热交换器。该模型是用来模拟性能为400m3/h的空气冷却器。作者指出,当入口空气温度低于24oC,他们的计算高估了冷却器性能20%,而对于较高的入口空气温度,冷却器性能高出10%。Anisimov[5,6]等人提出了一个组合并流和再生-逆流间接蒸发冷却器。在数学分析的基础上,他们指出这样一种冷却器比其他类型的冷却器具有较高的效率。Zhao[7]等人提出通过数值研究,逆流间接蒸发冷却器可以实现低于湿球温度。他们提出一系列设计条件尽量增大冷却器性能:

6、入口空气速度0.3~0.5m/s,空气通道高度6mm或较低,空气通道的长高比为200,工作空气和产出空气比大约为0.4。他们指出,在英国夏季设计条件下,冷却器湿球效率高达1.3[8]。Riangvilaikul和Kumar[9]在干燥、中等湿度和湿度气候下,在不同的入口空气条件下(温度、湿度和速度),对一个显热蒸发冷却系统进行实验。实验结果表明,湿球效率介于92和114%之间。在一个炎热和潮湿的气候下,选择一个典型的夏季某一天让系统连续运行,湿球效率几乎不变,为102%。本文的目的是通过研究,理论,方法实现间接蒸发冷却产出空气低于湿球温度。研究和比较了四

7、种不同类型的冷却结构和性能。本文的目的是,基于冷却器的热质交换过程数值分析的数学模型。名称d薄壁和水膜的厚度(m)β传质系数(kg水/sm2)/(kg水/kg干空气)Edp露点效率,Edp=(Ti-To)/(Ti-Tdp)下标Ewb湿球效率,Ewb=(Ti-To)/(Ti-Twb)d干侧H空气含湿量(kg水/kg干空气)dp露点温度h空气焓值(J/kg)i入口L通道长度(m)n节点M干通道的空气质量流量(kg/s)o出口m湿通道的空气质量流量(kg/s)w湿侧Q传热量(W)wb湿球温度RH空气相对湿度(%)1一级T干通道的空气温度(oC)2二级t湿通道的

8、空气温度(oC)上标tf水膜温度(oC)′饱和条件下空气-水接触面温度y1,y2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。