(人教版)中考数学复习权威课件:25矩形、菱形、正方形.ppt

(人教版)中考数学复习权威课件:25矩形、菱形、正方形.ppt

ID:51642242

大小:1.10 MB

页数:30页

时间:2020-03-27

(人教版)中考数学复习权威课件:25矩形、菱形、正方形.ppt_第1页
(人教版)中考数学复习权威课件:25矩形、菱形、正方形.ppt_第2页
(人教版)中考数学复习权威课件:25矩形、菱形、正方形.ppt_第3页
(人教版)中考数学复习权威课件:25矩形、菱形、正方形.ppt_第4页
(人教版)中考数学复习权威课件:25矩形、菱形、正方形.ppt_第5页
资源描述:

《(人教版)中考数学复习权威课件:25矩形、菱形、正方形.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第25课时 矩形、菱形、正方形回归教材回归教材考点聚焦考点聚焦归类探究归类探究考点聚焦考点1矩形考点聚焦归类探究回归教材第25课时┃矩形、菱形、正方形矩形定义有一个角是________的平行四边形叫做矩形矩形的性质对称性矩形是一个轴对称图形,它有两条对称轴矩形是中心对称图形,它的对称中心就是对角线的交点定理(1)矩形的四个角都是______角;(2)矩形的对角线互相平分并且______推论在直角三角形中,斜边上的中线等于________的一半直角直相等斜边矩形的判定(1)定义法(2)有三个角是直角的四边形是矩形(3)对角线______的平行四边形是矩形拓展(1)矩形的两条对角线把矩形分成四

2、个面积相等的等腰三角形;(2)矩形的面积等于两邻边的积第25课时┃矩形、菱形、正方形相等考点聚焦归类探究回归教材考点2菱形菱形定义有一组________相等的平行四边形是菱形菱形的性质对称性菱形是轴对称图形,两条对角线所在的直线是它的对称轴菱形是中心对称图形,它的对称中心是两条对角线的交点定理(1)菱形的四条边________;(2)菱形的两条对角线互相________平分,并且每条对角线平分___________第25课时┃矩形、菱形、正方形邻边相等垂直一组对角考点聚焦归类探究回归教材菱形的判定(1)定义法;(2)四条边________的四边形是菱形;(3)对角线互相________的平

3、行四边形是菱形菱形面积(1)由于菱形是平行四边形,所以菱形的面积=底×高;(2)因为菱形的对角线互相垂直平分,所以其对角线将菱形分成4个全等三角形,故菱形的面积等于两对角线乘积的________第25课时┃矩形、菱形、正方形相等垂直一半考点聚焦归类探究回归教材考点3正方形正方形的定义有一组邻边相等,且有一个角是直角的平行四边形叫做正方形正方形的性质(1)正方形对边________(2)正方形四边________(3)正方形四个角都是________(4)正方形对角线相等,互相________,每条对角线平分一组对角(5)正方形既是轴对称图形也是中心对称图形,对称轴有四条,对称中心是对角线的

4、交点第25课时┃矩形、菱形、正方形平行相等直角垂直平分考点聚焦归类探究回归教材正方形的判定(1)有一组邻边相等的矩形是正方形(2)有一个角是直角的菱形是正方形判定正方形的思路图:第25课时┃矩形、菱形、正方形考点聚焦归类探究回归教材考点4中点四边形顺次连接菱形各边中点所得到的四边形是______________顺次连接矩形各边中点所得到的四边形是______________顺次连接四边形各边中点所得到的四边形是常见结论顺次连接四边形各边中点所得的四边形,我们称之为中点四边形定义第25课时┃矩形、菱形、正方形菱形矩形考点聚焦归类探究回归教材顺次连接正方形各边中点所得到的四边形是_______

5、___顺次连接等腰梯形各边中点所得的四边形是______顺次连接对角线相等的四边形各边中点所得到的四边形是______顺次连接对角线互相垂直的四边形各边中点所得到的四边形是______第25课时┃矩形、菱形、正方形正方形菱形菱形矩形考点聚焦归类探究回归教材归类探究探究一 矩形的性质及判定的应用命题角度:1.矩形的性质;2.矩形的判定.例1[2013·白银]如图25-1,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.第25课时┃矩形、菱形、正方形考点聚焦归类探究回归教材(1)线段BD与CD有何数量关系,为什么?(2)当△A

6、BC满足什么条件时,四边形AFBD是矩形?请说明理由.图25-1第25课时┃矩形、菱形、正方形解:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.又E是AD的中点,∴AE=DE.∴△AFE≌△DCE.∴AF=CD.又AF=BD,∴BD=CD.(2)△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BC,AF=BD,∴四边形AFBD是平行四边形.∵AB=AC,BD=CD,∴AD⊥BC.∴∠ADB=90°.∴四边形AFBD是矩形.考点聚焦归类探究回归教材命题角度:1.菱形的性质;2.菱形的判定.例2[2013·泰安]如图25-2,在四边形AB

7、CD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.探究二 菱形的性质及判定的应用第25课时┃矩形、菱形、正方形考点聚焦归类探究回归教材图25-2第25课时┃矩形、菱形、正方形解:(1)∵AB=AD,CB=CD,AC=AC,∴

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。