初中数学模型解题法.doc

初中数学模型解题法.doc

ID:50769703

大小:47.95 KB

页数:6页

时间:2020-03-14

初中数学模型解题法.doc_第1页
初中数学模型解题法.doc_第2页
初中数学模型解题法.doc_第3页
初中数学模型解题法.doc_第4页
初中数学模型解题法.doc_第5页
资源描述:

《初中数学模型解题法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、初中数学模型解题法解答题1.(2001江苏苏州6分)如图,已知AB是半圆O的直径,AP为过点A的半圆的切线。在上任取一点C(点C与A、B不重合),过点C作半圆的切线CD交AP于点D;过点C作CE⊥AB,垂足为E.连接BD,交CE于点F。(1)当点C为的中点时(如图1),求证:CF=EF;(2)当点C不是的中点时(如图2),试判断CF与EF的相等关系是否保持不变,并证明你的结论。【答案】解:(1)证明:∵DA是切线,AB为直径,∴DA⊥AB。∵点C是的中点,且CE⊥AB,∴点E为半圆的圆心。又∵DC是切线,∴DC

2、⊥EC。又∵CE⊥AB,∴四边形DAEC是矩形。∴CD∥AO,CD=AD。∴,即EF=AD=EC。∴F为EC的中点,CF=EF。(2)CF=EF保持不变。证明如下:如图,连接BC,并延长BC交AP于G点,连接AC,∵AD、DC是半圆O的切线,∴DC=DA。∴∠DAC=∠DCA。∵AB是直径,∴∠ACB=90°。∴∠ACG=90°。∴∠DGC+∠DAC=∠DCA+∠DCG=90°。∴∠DGC=∠DCG。∴在△GDC中,GD=DC。∵DC=DA,∴GD=DA。∵AP是半圆O的切线,∴AP⊥AB。又∵CE⊥AB,∴C

3、E∥AP。∴△BCF∽△BGD,△BEF∽△BAD。∴。∵GD=AD,∴CF=EF。【考点】探究型,圆的综合题,切线的性质,矩形的判定和性质,平行线分线段成比例定理,等腰三角形的判定,相似三角形的判定和性质。【分析】(1)由题意得DA⊥AB,点E为半圆的圆心,DC⊥EC,可得四边形DAEC是矩形,即可得出,即可得EF与EC的关系,可知CF=EF。(2)连接BC,并延长BC交AP于G点,连接AC,由切线长定理可得DC=DA,∠DAC=∠DCA,由角度代换关系可得出∠DGC=∠DCG,即可得GD=DC=DA,由已知

4、可得CE∥AP,所以,即可知CF=EF。2.(2001江苏苏州7分)已知一个三角形纸片ABC,面积为25,BC的长为10,∠B、∠C都为锐角,M为AB边上的一动点(M与A、B不重合),过点M作MN∥BC交AC于点N,设MN=x。(1)用x表示△AMN的面积;(2)△AMN沿MN折叠,使△AMN紧贴四边形BCNM(边AM、AN落在四边形BCNM所在的平面内),设点A落在平面BCNM内的点A′,△A′MN与四边形BCNM重叠部分的面积为y。①用的代数式表示y,并写出x的取值范围;②当x为何值时,重叠部分的面积y最大

5、,最大为多少?【答案】解:(1)∵MN∥BC,∴△AMN∽△ABC。∴。∴,即。(2)①当点A′落在四边形BCMN内或BC边上时,(0<x≤5)。当点A′在四边形BCMN外,连接AA′与MN交于点G与BC交于点F,∵MN∥BC,∴,即。∴AG=x。∴AA′=2AG=x。∴A′F=x-5。∴,即。∴。∴重合部分的面积。综上所述,重合部分的面积。②∵∴当x=时,y最大,最大值为y最大=。【考点】翻折变换(折叠问题),相似三角形的判定和性质,二次函数的最值。【分析】(1)根据已知条件求出△AMN∽△ABC,再根据面积

6、比等于相似比的平方的性质即可求出△AMN的面积。(2)根据已知条件分两种情况进行讨论,当点A′落在四边形BCMN内或BC边上时和当点A′在四边形BCMN外时进行讨论,第一种情况很容易求出,第二种情况进行画图,连接AA′与MN交于点G与BC交于点F,再根据面积比等于相似比的平方的性质求出即可.再根据求出的式子,即可求出重叠部分的面积y的最大值来。3.(江苏省苏州市2002年7分)已知:⊙与⊙外切于点,过点的直线分别交⊙、⊙于点、,⊙的切线交⊙于点、,为⊙的弦,(1)如图(1),设弦交于点,求证:;(2)如图(2)

7、,当弦绕点旋转,弦的延长线交直线B于点时,试问:是否仍然成立?证明你的结论。【答案】解:(1)证明:连结,过点作⊙与⊙的公切线。∴。又∵是⊙的切线,∴。又∵,∴。又∵,∴。∴,即。(2)仍成立。证明如下:连结,过点作⊙和⊙的公切线。∵是⊙的切线,∴。∴。∴。又∵,∴。又∵,∴。∴,即。【考点】相切两圆切线的性质,弦切角定理,切线长定理,等腰三角形的性质,对顶角的性质,相似三角形的判定和性质。【分析】(1)连结,过点作⊙与⊙的公切线。根据弦切角定理可得,由也是⊙的切线,根据切线长定理可得,从而根据等腰三角形等边对

8、等角的性质,得到,由对顶角相等的性质,得到。又,从而,根据相似三角形的性质即可证明。(2)同(1)可以证明。4.(江苏省苏州市2002年7分)如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3)。点P、Q同时从原点出发,分别作匀速运动。其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动。当这两点中有一点到达自

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。