欢迎来到天天文库
浏览记录
ID:50178264
大小:2.98 MB
页数:55页
时间:2020-03-06
《复变函数题库(包含好多试卷-后面都有答案) 最新.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、《复变函数论》试题库《复变函数》考试试题(1)一.填空题.(20分)1.设,则f(z)的定义域为___________.2.函数ez的周期为_________.3.若,则__________.4.___________.5._________.(为自然数)6.幂级数的收敛半径为__________.7.设,则f(z)的孤立奇点有__________.8.设,则.9.若是的极点,则.10..一.判断题.(20分).1.cosz与sinz的周期均为.()2.若f(z)在z0处满足柯西-黎曼条件,则f(z)在z0解析.()3.若函数f(z)在z0处解析,则f(z)在z0连续.()4.若数
2、列收敛,则与都收敛.()5.若函数f(z)是区域D内解析且在D内的某个圆内恒为常数,则数f(z)在区域D内为常数.()6.若函数f(z)在z0解析,则f(z)在z0的某个邻域内可导.()7.如果函数f(z)在上解析,且,则.()8.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.()9.若z0是的m阶零点,则z0是1/的m阶极点.()10.若是的可去奇点,则.()三.计算题.(40分)1.将函数在圆环域内展为Laurent级数.2.试求幂级数的收敛半径.3.算下列积分:,其中是.4.求在
3、z
4、<1内根的个数.四.证明题.(20分)1.函数在区域内解析.证明:如果
5、在内为常数,那么它在内为常数.2.设是一整函数,并且假定存在着一个正整数n,以及两个正数R及M,使得当时,证明是一个至多n次的多项式或一常数。《复变函数》考试试题(四)一.判断题.(20分)1.若f(z)在z0解析,则f(z)在z0处满足柯西-黎曼条件.()2.若函数f(z)在z0可导,则f(z)在z0解析.()3.函数与在整个复平面内有界.()4.若f(z)在区域D内解析,则对D内任一简单闭曲线C都有.()5.若存在且有限,则z0是函数的可去奇点.()6.若函数f(z)在区域D内解析且,则f(z)在D内恒为常数.()7.如果z0是f(z)的本性奇点,则一定不存在.()8.若,则为
6、的n阶零点.()9.若与在内解析,且在内一小弧段上相等,则.()10.若在内解析,则.()二.填空题.(20分)1.设,则.2.若,则______________.3.函数ez的周期为__________.4.函数的幂级数展开式为__________5.若函数f(z)在复平面上处处解析,则称它是___________.6.若函数f(z)在区域D内除去有限个极点之外处处解析,则称它是D内的_____________.7.设,则.8.的孤立奇点为________.9.若是的极点,则.10._____________.三.计算题.(40分)1.解方程.2.设,求3..4.函数有哪些奇点?
7、各属何类型(若是极点,指明它的阶数).四.证明题.(20分)1.证明:若函数在上半平面解析,则函数在下半平面解析.2.证明方程在内仅有3个根.《复变函数》考试试题(五)一.判断题.(20分)1.若函数f(z)是单连通区域D内的解析函数,则它在D内有任意阶导数.()2.若函数f(z)在区域D内的解析,且在D内某个圆内恒为常数,则在区域D内恒等于常数.()3.若f(z)在区域D内解析,则
8、f(z)
9、也在D内解析.()4.若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析.()5.若函数f(z)在z0处满足Cauchy-Riemann条件,则f(z)在z0解析.()6.若存在且有限,则
10、z0是f(z)的可去奇点.()7.若函数f(z)在z0可导,则它在该点解析.()8.设函数在复平面上解析,若它有界,则必为常数.()9.若是的一级极点,则.()10.若与在内解析,且在内一小弧段上相等,则.()二.填空题.(20分)1.设,则.2.当时,为实数.3.设,则.4.的周期为___.5.设,则.6..7.若函数f(z)在区域D内除去有限个极点之外处处解析,则称它是D内的_____________。8.函数的幂级数展开式为_________.9.的孤立奇点为________.10.设C是以为a心,r为半径的圆周,则.(为自然数)三.计算题.(40分)1.求复数的实部与虚部.
11、2.计算积分:,在这里L表示连接原点到的直线段.3.求积分:,其中012、z13、<1内根的个数,在这里在上解析,并且.四.证明题.(20分)1.证明函数除去在外,处处不可微.2.设是一整函数,并且假定存在着一个正整数n,以及两个数R及M,使得当时,证明:是一个至多n次的多项式或一常数.《复变函数》考试试题(六)一、判断题(30分):1.若函数在解析,则在连续.()2.若函数在处满足Caychy-Riemann条件,则在解析.()3.若函数
12、z
13、<1内根的个数,在这里在上解析,并且.四.证明题.(20分)1.证明函数除去在外,处处不可微.2.设是一整函数,并且假定存在着一个正整数n,以及两个数R及M,使得当时,证明:是一个至多n次的多项式或一常数.《复变函数》考试试题(六)一、判断题(30分):1.若函数在解析,则在连续.()2.若函数在处满足Caychy-Riemann条件,则在解析.()3.若函数
此文档下载收益归作者所有