3、广义虎克定律1.弹性模量 对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括: a 弹性模量单向拉伸或压缩时正应力与线应变之比,即 b 切变模量切应力与相应的切应变之比,即 c 体积弹性模量三向平均应力与体积应变θ(=εx+εy+εz)之比,即 d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1弹性常数间的关系。室温下弹性常数的典型值见表3-2弹性常数的典型值。2.广义虎克定律 线
4、弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。 A 各向同性材料的广义虎克定律表达式(见表3-3广义胡克定律表达式) 对于圆柱坐标和球坐标,表中三向应力公式中的x、y、z分别用r、θ、z和r、θ、φ代替。对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。 B 用偏量形式和体积弹性定律表示的广义虎克定律 应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即 体积弹性定律 应力偏量与应变偏量关系式在直角坐标中,i,j=x,y,z;在圆柱坐标中,
18、,简写为或2.边界条件 弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。弹性力学问题按边界条件分为三类。 a 应力边界问题 在边界Sσ表面上作用的表面力分量为Fx、Fy、Fz.。面力与该点在物体内的应力分量之间的关系,即力的边界条件为式中,lnj=cos(n,j)为边界上一点的外法线n对j轴的方向余弦。 这一类问题中体积力和表面力是已知的,求解体内各点的位移、应变和应力。 b 位移边界问题 在边界Sx上给定的几何边界条件为word教育资料.式中,U*i为表面上给定的位移分量。 这一类问题是已知体积力和表面各点的位移,求解体内各点的位移、应变和应力
19、。 c 混合问题部分边界上给定力,部分边界上给定位移。3.按位移求解的弹性力学基本方法 按位移求解时,以3个位移分量为基本未知量,利用几何方程和物性方程,15个基本方程简化为以位移表示的平衡方程: 求解时位移分量在物体内部满足式(3-14),在位移边界Su上满足式(3-13),在应力边界Sσ上满足式(3-12),但式中的应力分量应利用应力-应变关系和应变-位移关系变换为位移的形式。求出位移分量后,再利用几何方程和物性方程,求出应变和应力分量。4.按应力求解的弹性力学基本方程 按应力求解时,以6个应力分量为基本未知量。它们必须满足平衡方程,同时还要满足以应力表示的协调方程,即式(