六年级奥数-第五讲.几何-立体部分.教师版

六年级奥数-第五讲.几何-立体部分.教师版

ID:47113997

大小:1.93 MB

页数:21页

时间:2019-08-06

六年级奥数-第五讲.几何-立体部分.教师版_第1页
六年级奥数-第五讲.几何-立体部分.教师版_第2页
六年级奥数-第五讲.几何-立体部分.教师版_第3页
六年级奥数-第五讲.几何-立体部分.教师版_第4页
六年级奥数-第五讲.几何-立体部分.教师版_第5页
资源描述:

《六年级奥数-第五讲.几何-立体部分.教师版》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第五讲几何——立体部分教学目标:对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.知识点拨:一、长方体和正方体如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.①在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.)②长方体的表面积和体积的计算公式是:长方体的表面积:;长方体的体积:.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱

2、长为,那么:,.二、圆柱与圆锥立体图形表面积体积圆柱圆锥注:是母线,即从顶点到底面圆上的线段长例题精讲:【例1】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10106600.【例2】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【解析】原正方体的表面积是44696(平方

3、厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:9646120平方厘米.【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米第21页共21页的小正方体,问剩下的立体图形的表面积是多少?【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:5050615000(平方厘米).【例1】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个

4、棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为厘米,那么最后得到的立体图形的表面积是多少平方厘米?【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2228(平方厘米);左右方向、前后方向:22416(平方厘米),1144(平方厘米),41(平方厘米),4(平方厘米),这个立体图形的表面积为:41(平方厘米).【例2】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和

5、是多少?【解析】锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数2增加的面数.原正方体表面积:1166(平方米),一共锯了(21)(31)(41)6次,6112618(平方米).【巩固】(2008年走美六年级初赛)一个表面积为的长方体如图切成27个小长方体,这27个小长方体表面积的和是.【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为.【例3】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?【解析】当小积木互相重合的面最多时表面积最小

6、.设想27块边长为1的正方形积木,当拼成一个的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.第21页共21页【例1】要把12件同样的长a、宽b、高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?⑴当b2h时,如何打包?⑵当b2h时,如何打包?⑶当b2h时,如何打包?【解析】图2和图3正面的面积相同,侧面面积正面周长长方体长,所以正面的周长愈大表面积越大,图2的正面周长是8h6b,图3的周长是12h4b.两者的周长之差为2(b2

7、h).当b2h时,图2和图3周长相等,可随意打包;当b2h时,按图2打包;当b2h时,按图3打包.【巩固】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【解析】考虑所有的包装方法,因为6123,所以一共有两种拼接方式:第一种按长宽高116拼接,重叠面有三种选择,共3种包装方法.第二种按长宽高123拼接,有3个长方体并列方向的重叠面有三种选择,有2个长方体并列方向的重叠面剩下2种选择,一共有6种包装方法.其中表面积最小的包装方法如图所示,表面积为1034.【例2】如图,在一个棱长为5分米的正方体上放一个棱长为4

8、分米的小正方体,求这个立体图形的表面积.【解析】我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。