欢迎来到天天文库
浏览记录
ID:47084995
大小:959.50 KB
页数:32页
时间:2019-07-21
《【9A文】上海中考数学复习要点汇总》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【MeiWei_81重点借鉴文档】第一部分:基础知识汇总数学定理公式汇编(有些不在大纲范围,但高分必须知道的)一、数与代数1.数与式(1)实数性质:①实数a的相反数是—a,实数a的倒数是(a≠0);②实数a的绝对值:③正数大于0,负数小于0,两个负实数,绝对值大的反而小。(2)二次根式:①积与商的方根的运算性质:(a≥0,b≥0);(a≥0,b>0);②二次根式的性质:(2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m、n为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即
2、(a≠0,m、n为正整数,m>n);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n为正整数);④零指数:(a≠0);⑤负整数指数:(a≠0,n为正整数);⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;(3)分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即;,其中m是不等于零的代数式;②分式的乘法法则:;③分式的除法法则:;④分式的乘方法则:(n为正整数);⑤同分
3、母分式加减法则:;⑥异分母分式加减法则:;2.方程与不等式①一元二次方程(a≠0)的求根公式:②一元二次方程根的判别式:叫做一元二次方程(a≠0)的根的判别式:【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根;③一元二次方程根与系数的关系:设、是方程(a≠0)的两个根,那么+=,=;不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边
4、都乘以(或除以)同一个负数,不等号的方向改变;1.函数一次函数的图象:函数R=kR+b(k、b是常数,k≠0)的图象是过点(0,b)且与直线R=kR平行的一条直线;一次函数的性质:设R=kR+b(k≠0),则当k>0时,R随R的增大而增大;当k<0,R随R的增大而减小;正比例函数的图象:函数的图象是过原点及点(1,k)的一条直线。正比例函数的性质:设,则:①当k>0时,R随R的增大而增大;②当k<0时,R随R的增大而减小;反比例函数的图象:函数(k≠0)是双曲线;反比例函数性质:设(k≠0),如果k>0,则当R>0时或
5、R<0时,R分别随R的增大而减小;如果k<0,则当R>0时或R<0时,R分别随R的增大而增大;二次函数的图象:函数的图象是对称轴平行于R轴的抛物线;①开口方向:当a>0时,抛物线开口向上,当a<0时,抛物线开口向下;②对称轴:直线;③顶点坐标(;④增减性:当a>0时,如果,则R随R的增大而减小,如果,则R随R的增大而增大;当a<0时,如果,则R随R的增大而增大,如果,则R随R的增大而减小;二、空间与图形1.图形的认识(1)角角平分线的性质:角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角平分线上。(2)
6、相交线与平行线同角或等角的补角相等,同角或等角的余角相等;对顶角的性质:对顶角相等垂线的性质:①过一点有且只有一条直线与已知直线垂直;②直线外一点有与直线上各点连结的所有线段中,垂线段最短;线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线;线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;平行线的定义:在同一平面内不相交的两条直线叫做平行线;平行线的判定:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;
7、平行线的特征:①两直线平行,同位角相等;【MeiWei_81重点借鉴文档】【MeiWei_81重点借鉴文档】②两直线平行,内错角相等;③两直线平行,同旁内角互补;平行公理:经过直线外一点有且只有一条直线平行于已知直线。(3)三角形三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;三角形的内角和定理:三角形的三个内角的和等于;三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;三角形的三条角平分线交于一点(内心);三
8、角形的三边的垂直平分线交于一点(外心);三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;全等三角形的判定:①边角边公理(SAS)②角边角公理(ASA)③角角边定理(AAS)④边边边公理(SSS)⑤斜边、直角边公理(HL)等腰三角形的性质:①等腰三角形的两个底角相等;②等腰三角形的顶角平分线、底边上的中线、
此文档下载收益归作者所有