欢迎来到天天文库
浏览记录
ID:47046792
大小:320.50 KB
页数:17页
时间:2019-07-08
《2019届高考数学二轮复习专题六函数与导数不等式第5讲导数的综合应用与热点问题学案理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第5讲 导数的综合应用与热点问题高考定位 在高考压轴题中,函数与方程、不等式的交汇是考查的热点,常以含指数函数、对数函数为载体考查函数的零点(方程的根)、比较大小、不等式证明、不等式恒成立与能成立问题.真题感悟1.(2018·全国Ⅱ卷)已知函数f(x)=ex-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.(1)证明 当a=1时,f(x)=ex-x2,则f′(x)=ex-2x.令g(x)=f′(x),则g′(x)=ex-2.令g′(x)=0,解得x=ln
2、2.当x∈(0,ln2)时,g′(x)<0;当x∈(ln2,+∞)时,g′(x)>0.∴当x≥0时,g(x)≥g(ln2)=2-2ln2>0,∴f(x)在[0,+∞)上单调递增,∴f(x)≥f(0)=1.(2)解 若f(x)在(0,+∞)上只有一个零点,即方程ex-ax2=0在(0,+∞)上只有一个解,由a=,令φ(x)=,x∈(0,+∞),φ′(x)=,令φ′(x)=0,解得x=2.当x∈(0,2)时,φ′(x)<0;当x∈(2,+∞)时,φ′(x)>0.∴φ(x)min=φ(2)=.∴a=.2.(2017·
3、全国Ⅱ卷)已知函数f(x)=ax2-ax-xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-21时,g′(x)>0,g(x)单调递增,所以
4、x=1是g(x)的极小值点,故g(x)≥g(1)=0.综上,a=1.(2)证明 由(1)知f(x)=x2-x-xlnx,f′(x)=2x-2-lnx,设h(x)=2x-2-lnx,则h′(x)=2-.当x∈时,h′(x)<0;当x∈时,h′(x)>0.所以h(x)在单调递减,在单调递增.又h(e-2)>0,h<0,h(1)=0,所以h(x)在有唯一零点x0,在有唯一零点1,且当x∈(0,x0)时,h(x)>0;当x∈(x0,1)时,h(x)<0;当x∈(1,+∞)时,h(x)>0.因为f′(x)=h(x),所以
5、x=x0是f(x)的唯一极大值点.由f′(x0)=0得lnx0=2(x0-1),故f(x0)=x0(1-x0).由x0∈得f(x0)<.因为x=x0是f(x)在(0,1)的最大值点,由e-1∈(0,1),f′(e-1)≠0得f(x0)>f(e-1)=e-2.所以e-26、在两个极值点的情况下,由于当x→∞时,函数值也趋向∞,只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x1,x2且x10两个f(x1)=0或者f(x2)=0三个f(x1)>0且f(x2)<0a<0(f(x1)为极小值,f(x2)为极大值)一个f(x1)>0或f(x2)<0两个f(x1)=0或者f(x2)=0三个f(x1)7、<0且f(x2)>03.利用导数解决不等式问题(1)利用导数证明不等式.若证明f(x)g(x)对一切x∈I恒成立I是f(x)>g(x)的解集的子集[f(x)-g(x)]min>0(x∈I).②x∈I,使f(x)>g(x)成立I与f(x)>g(x)的解集的交集不是空集[f(x)-8、g(x)]max>0(x∈I).③对x1,x2∈I使得f(x1)≤g(x2)f(x)max≤g(x)min.④对x1∈I,x2∈I使得f(x1)≥g(x2)f(x)min≥g(x)min.温馨提醒 解决方程、不等式相关问题,要认真分析题目的结构特点和已知条件,恰当构造函数并借助导数研究性质,这是解题的关键.热点一 利用导数研究函数的零点(方程的根)【例1】(2018·西安调研
6、在两个极值点的情况下,由于当x→∞时,函数值也趋向∞,只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x1,x2且x10两个f(x1)=0或者f(x2)=0三个f(x1)>0且f(x2)<0a<0(f(x1)为极小值,f(x2)为极大值)一个f(x1)>0或f(x2)<0两个f(x1)=0或者f(x2)=0三个f(x1)
7、<0且f(x2)>03.利用导数解决不等式问题(1)利用导数证明不等式.若证明f(x)g(x)对一切x∈I恒成立I是f(x)>g(x)的解集的子集[f(x)-g(x)]min>0(x∈I).②x∈I,使f(x)>g(x)成立I与f(x)>g(x)的解集的交集不是空集[f(x)-
8、g(x)]max>0(x∈I).③对x1,x2∈I使得f(x1)≤g(x2)f(x)max≤g(x)min.④对x1∈I,x2∈I使得f(x1)≥g(x2)f(x)min≥g(x)min.温馨提醒 解决方程、不等式相关问题,要认真分析题目的结构特点和已知条件,恰当构造函数并借助导数研究性质,这是解题的关键.热点一 利用导数研究函数的零点(方程的根)【例1】(2018·西安调研
此文档下载收益归作者所有