欢迎来到天天文库
浏览记录
ID:45201343
大小:72.80 KB
页数:4页
时间:2019-11-10
《2019-2020年高中数学课时作业7正切函数的定义正切函数的图像与性质北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高中数学课时作业7正切函数的定义正切函数的图像与性质北师大版
2、基础巩固
3、(25分钟,60分)一、选择题(每小题5分,共25分)1.函数f(x)=tan的最小正周期为( )A. B.C.πD.2π解析:函数f(x)=tan(ωx+φ)的周期是T=,直接利用公式,可得T==.答案:A2.函数y=(-tan800°B.tan14、n2C.tan5、曲线没有对称轴,因此函数y=tan的图象也没有对称轴,故D错误.故选B.答案:B二、填空题(每小题5分,共15分)6.函数y=tan(2x-)的定义域是________.解析:因为2x-≠+kπ(k∈Z)⇒x≠+(k∈Z),所以定义域为.答案:7.不等式tan≥-1的解集是________.解析:由正切函数图像知-+kπ≤2x-<+kπ,k∈Z,所以≤x<π+,k∈Z.答案:,k∈Z8.(xx·苏州五市四区联考)函数y=tanx的值域是________.解析:因为x∈,所以tanx∈[-1,].答案:[-1,]三、解答题(每小题10分,共20分)9.求函数y=tan的定义域、周期及单调区间.解6、析:由x-≠+kπ,k∈Z,得x≠+2kπ,k∈Z,所以函数y=tan的定义域为.T==2π,所以函数y=tan的周期为2π.由-+kπ7、能力提升8、(20分钟,40分)11.如果函数y=tan(x+φ)的图象9、经过点,那么φ可能是( )A.-B.-C.D.解析:∵y=tan(x+φ)的图象经过点,∴tan=0,即+φ=kπ,k∈Z,则φ=kπ-,k∈Z,当k=0时,φ=-,故选A.答案:A12.已知函数y=tanωx在内是单调减函数,则ω的取值范围是________.解析:函数y=tanωx在内是单调减函数,则有ω<0,且周期T≥-=π,即≥π,故10、ω11、≤1,∴-1≤ω<0.答案:[-1,0)13.作出函数y=tanx+12、tanx13、的图像,并求其定义域、值域、单调区间及最小正周期.解析:y=tanx+14、tanx15、=其图象如图所示,由图像可知,其定义域是(k∈Z);值域是[0,+∞);单调递增区间是16、(k∈Z);最小正周期T=π.14.已知函数f(x)=3tan.(1)求f(x)的定义域、值域;(2)讨论f(x)的周期性,奇偶性和单调性.解析:(1)由x-≠+kπ,k∈Z,得x≠2kπ+π,k∈Z,∴f(x)的定义域为,值域为R.(2)f(x)为周期函数,由于f(x)=3tan=3tan=3tan=f(x+2π),所以最小正周期T=2π.易知f(x)为非奇非偶函数.由-+kπ
4、n2C.tan5、曲线没有对称轴,因此函数y=tan的图象也没有对称轴,故D错误.故选B.答案:B二、填空题(每小题5分,共15分)6.函数y=tan(2x-)的定义域是________.解析:因为2x-≠+kπ(k∈Z)⇒x≠+(k∈Z),所以定义域为.答案:7.不等式tan≥-1的解集是________.解析:由正切函数图像知-+kπ≤2x-<+kπ,k∈Z,所以≤x<π+,k∈Z.答案:,k∈Z8.(xx·苏州五市四区联考)函数y=tanx的值域是________.解析:因为x∈,所以tanx∈[-1,].答案:[-1,]三、解答题(每小题10分,共20分)9.求函数y=tan的定义域、周期及单调区间.解6、析:由x-≠+kπ,k∈Z,得x≠+2kπ,k∈Z,所以函数y=tan的定义域为.T==2π,所以函数y=tan的周期为2π.由-+kπ7、能力提升8、(20分钟,40分)11.如果函数y=tan(x+φ)的图象9、经过点,那么φ可能是( )A.-B.-C.D.解析:∵y=tan(x+φ)的图象经过点,∴tan=0,即+φ=kπ,k∈Z,则φ=kπ-,k∈Z,当k=0时,φ=-,故选A.答案:A12.已知函数y=tanωx在内是单调减函数,则ω的取值范围是________.解析:函数y=tanωx在内是单调减函数,则有ω<0,且周期T≥-=π,即≥π,故10、ω11、≤1,∴-1≤ω<0.答案:[-1,0)13.作出函数y=tanx+12、tanx13、的图像,并求其定义域、值域、单调区间及最小正周期.解析:y=tanx+14、tanx15、=其图象如图所示,由图像可知,其定义域是(k∈Z);值域是[0,+∞);单调递增区间是16、(k∈Z);最小正周期T=π.14.已知函数f(x)=3tan.(1)求f(x)的定义域、值域;(2)讨论f(x)的周期性,奇偶性和单调性.解析:(1)由x-≠+kπ,k∈Z,得x≠2kπ+π,k∈Z,∴f(x)的定义域为,值域为R.(2)f(x)为周期函数,由于f(x)=3tan=3tan=3tan=f(x+2π),所以最小正周期T=2π.易知f(x)为非奇非偶函数.由-+kπ
5、曲线没有对称轴,因此函数y=tan的图象也没有对称轴,故D错误.故选B.答案:B二、填空题(每小题5分,共15分)6.函数y=tan(2x-)的定义域是________.解析:因为2x-≠+kπ(k∈Z)⇒x≠+(k∈Z),所以定义域为.答案:7.不等式tan≥-1的解集是________.解析:由正切函数图像知-+kπ≤2x-<+kπ,k∈Z,所以≤x<π+,k∈Z.答案:,k∈Z8.(xx·苏州五市四区联考)函数y=tanx的值域是________.解析:因为x∈,所以tanx∈[-1,].答案:[-1,]三、解答题(每小题10分,共20分)9.求函数y=tan的定义域、周期及单调区间.解
6、析:由x-≠+kπ,k∈Z,得x≠+2kπ,k∈Z,所以函数y=tan的定义域为.T==2π,所以函数y=tan的周期为2π.由-+kπ7、能力提升8、(20分钟,40分)11.如果函数y=tan(x+φ)的图象9、经过点,那么φ可能是( )A.-B.-C.D.解析:∵y=tan(x+φ)的图象经过点,∴tan=0,即+φ=kπ,k∈Z,则φ=kπ-,k∈Z,当k=0时,φ=-,故选A.答案:A12.已知函数y=tanωx在内是单调减函数,则ω的取值范围是________.解析:函数y=tanωx在内是单调减函数,则有ω<0,且周期T≥-=π,即≥π,故10、ω11、≤1,∴-1≤ω<0.答案:[-1,0)13.作出函数y=tanx+12、tanx13、的图像,并求其定义域、值域、单调区间及最小正周期.解析:y=tanx+14、tanx15、=其图象如图所示,由图像可知,其定义域是(k∈Z);值域是[0,+∞);单调递增区间是16、(k∈Z);最小正周期T=π.14.已知函数f(x)=3tan.(1)求f(x)的定义域、值域;(2)讨论f(x)的周期性,奇偶性和单调性.解析:(1)由x-≠+kπ,k∈Z,得x≠2kπ+π,k∈Z,∴f(x)的定义域为,值域为R.(2)f(x)为周期函数,由于f(x)=3tan=3tan=3tan=f(x+2π),所以最小正周期T=2π.易知f(x)为非奇非偶函数.由-+kπ
7、能力提升
8、(20分钟,40分)11.如果函数y=tan(x+φ)的图象
9、经过点,那么φ可能是( )A.-B.-C.D.解析:∵y=tan(x+φ)的图象经过点,∴tan=0,即+φ=kπ,k∈Z,则φ=kπ-,k∈Z,当k=0时,φ=-,故选A.答案:A12.已知函数y=tanωx在内是单调减函数,则ω的取值范围是________.解析:函数y=tanωx在内是单调减函数,则有ω<0,且周期T≥-=π,即≥π,故
10、ω
11、≤1,∴-1≤ω<0.答案:[-1,0)13.作出函数y=tanx+
12、tanx
13、的图像,并求其定义域、值域、单调区间及最小正周期.解析:y=tanx+
14、tanx
15、=其图象如图所示,由图像可知,其定义域是(k∈Z);值域是[0,+∞);单调递增区间是
16、(k∈Z);最小正周期T=π.14.已知函数f(x)=3tan.(1)求f(x)的定义域、值域;(2)讨论f(x)的周期性,奇偶性和单调性.解析:(1)由x-≠+kπ,k∈Z,得x≠2kπ+π,k∈Z,∴f(x)的定义域为,值域为R.(2)f(x)为周期函数,由于f(x)=3tan=3tan=3tan=f(x+2π),所以最小正周期T=2π.易知f(x)为非奇非偶函数.由-+kπ
此文档下载收益归作者所有