欢迎来到天天文库
浏览记录
ID:45121232
大小:346.00 KB
页数:16页
时间:2019-11-10
《各地中考数学试卷分类汇编 相交线与平行线(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、相交线与平行线一.选择题1.(xx·湖北江汉油田、潜江市、天门市、仙桃市·3分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30°B.36°C.45°D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.【点评】此题主要考查了平行
2、线的性质,正确得出∠ADB度数是解题关键.2.(xx·湖北随州·3分)如图,在平行线l1.l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1.l2上,若∠l=65°,则∠2的度数是()A.25°B.35°C.45°D.65°【分析】过点C作CD∥a,再由平行线的性质即可得出结论.【解答】解:如图,过点C作CD∥a,则∠1=∠ACD.∵a∥b,∴CD∥b,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.【点评】本题考查的是平行线的性质,
3、根据题意作出辅助线,构造出平行线是解答此题的关键.3.(xx·湖北襄阳·3分)如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为()A.55°B.50°C.45°D.40°【分析】利用平行线的性质求出∠3即可解决问题;【解答】解:∵∠1=∠3=50°,∠2+∠3=90°,∴∠2=90°﹣∠3=40°,故选:D.【点评】本题考查平行线的性质,三角板的性质等知识,解题的关键是灵活运用所学知识解决问题.4.(xx·湖南郴州·3分)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A
4、.∠2=∠4B.∠1+∠4=180°C.∠5=∠4D.∠1=∠3【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可.【解答】解:由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b;故选:D.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.5.(xx·湖南怀化·4分)如图,直线a∥b,∠1=60°,则∠2=()A.30°B.60°C.45°D.120°【分析】根据两直线平行,同位角
5、相等即可求解.【解答】解:∵a∥b,∴∠2=∠1,∵∠1=60°,∴∠2=60°.故选:B.【点评】本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.关键.6.(xx•江苏宿迁•3分)如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是()A.24°B.59°C.60°D.69°【答案】B【分析】根据三角形外角性质得∠DBC=∠A+∠C,再由平行线性质得∠D=∠DBC.【详解】∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=35°+24°=59°,又
6、∵DE∥BC,∴∠D=∠DBC=59°,故选B.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握相关的性质是解题的关键.7.(xx•江苏淮安•3分)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.65°【分析】求出∠3即可解决问题;【解答】解:∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,故选:C.【点评】此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的9.(xx•山东东营市•3分)下列图形中,根据
7、AB∥CD,能得到∠1=∠2的是()A.B.CD.【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同
8、位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.10.(xx•达州•3分)如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°【分析】根据平行线的性质和三角形的外角性质解答即可.【解答】解:∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3﹣∠4=80°﹣45°=35°,故选:B.
此文档下载收益归作者所有