欢迎来到天天文库
浏览记录
ID:42894988
大小:40.50 KB
页数:3页
时间:2019-09-23
《数理统计简述题答案》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、1.参数的点估计的类型、方法、评价方法。(1)点估计(2)区间估计点估计法:a,矩估计法。基本思想:由于样品来源于总体,样品矩在一定程度上反映了总体矩,而且由于大数定律可知,样品矩依概率收敛于总体矩。因此,只要总体x的k阶原点矩存在,就可以用样本矩作为相应总体矩的估计量,用样本矩的函数作为总体矩的函数的估计量。b,极大似然估计法。基本思想:设总体分布的函数形式已知,但有未知参数,可以取很多值,有的一切可能取值中选一个使样品观测值出现概率最大的值作为的估计量,记作,并称为的极大似然估计值,这叫极大似然估计法。2.方差
2、分析的目的及思想(结合单因素)。目的:通过分析,判定某一因子是否显著,当因子显著时,我们可以绘出每一水平下指标均值的估计,以便找出最好的水平。方差分析是对多个总体均值是否相等这一假设进行检验。思想:检验==……是通过方差的比较来确定的,即要考虑均值之间的差异,差异产生来自两个方面,一是由因数中不同水平造成的,称为系统性差异;二是由随机性产生的差异。两方面的差异用两个方差来计量,一个称水平之间的方差(既包括系统因数,又包括随机性因数);一个称为水平内部方差(仅包括随机因数)。如果不同的水平对结果没有影响,两个方差的比
3、值会接近于1;反之,则两个方差的比值会显著地大于1很多,认为HO不真,可作出判断,说明不同水平之间存在着显著性差异。如果方差分析只对一个因数进行单因数方差分析,单因数方差分析所讨论的是在一个总体标准差皆相等的条件下,解决一个总体平均数是否相等的问题。5.简述正交实验设计中的数据分析方法方法:极差分析法和方差分析法。极差分析法步骤:(1)定指标,确定因数,选水平(2)选用适当的正交表,表头设计,确定实验方案;(3)严格按要求做实验,并记录实验结果;(4)计算i个因数的每个水平的实验结果和极差(同一因数不同水平的差异)
4、,其反映了该因数对实验结果的影响大小;(5)按级差大小排列因数主次;(6)选取较优生产条件(7)进行实验性试验,做进一步分析。方差分析法:思想:将数据的总偏差平方和分解为因数的偏差平方和与随机误差的平方和之和,用各因数的偏差平方和与误差平方和相比,做一下检验,即可判断引述的作用是否显著,这里用方差分析的思想来处理有正交表安排的多因数实验的实验结果,分析各因数是否存在显著影响。6主成分分析的基本思想。主成分分析是从总体的多个指标中构造出很少几个互不相关的综合指标,且使这几个综合指标尽可能充分的反映原来各个指标的信息。
5、即主成分分析是一种把原来多个指标化为少数几个互不相关的综合指标的一种统计方法。它的目的是力求数据信息丢失最少的原则下,对高维变量空间进行降维处理。即用原来变量的少数几个线性组合(称为综合变量)来代替原变量,以达到简化数据,揭示变量之间关系和进行统计解释的目的。7、典型相关分析答:考虑X的综合指标(X的线性函数)与y的综合指标之间的相关性程度来刻画X与Y的相关性,即把两组变量的相关变为两个新变量(线性函数)之间的相关来进行讨论,同时又尽量保留原来变量的信息,或者说,找X的线性函数和Y的线性函数,使这两个函数具有最大的
6、相关性。称这种相关为典型相关,称形式的两个线性函数即两个新的变量为典型变量,继而还可以分别找出X与Y的第二对线性函数,使其与第一对典型变量不相关,而这两个线性函数之间又具有最大的相关性,如此继续进行下去,直到两组变量X与Y之间的相关性被提取完毕为止,这就是典型相关分析的基本思想。总之,典型相关分析是揭示两个因素“集团”之间内部联系的一种数学方法。8、贝叶斯判别法答:贝叶斯判别是根据先验信息使得误判所造成的平均损失达到最小的判别法。假定对研究对象已有一定的认识,常用先验概率分布来描述这种认识,然后我们取得一个样本,用
7、样本来修正已有的认识(先验概率分布)得到后验概率分布,各种统计推断通过后验概率分布来进行,将贝叶斯思想用于判别分析就得到贝叶斯分布。9、聚类,分类答:聚类分析是研究对样品或指标进行分类的一种多元统计方法,分类是将一个观测对象指定到某一类(组)。分类问题可分为两种:一是将一些未知类别的个体正确地归属于另外一些已知类中的某一类,另一种是事先不知道研究的问题应该分为几类,而是根据统计分析建立一种分类方法,并按接近程度对观测对象给出合理的分类,这一类问题即是聚类分析所要解决的问题。聚类分析根据分类对象的不同分为R型和Q型两
8、大类。R型是对变量(指标)进行分类,Q型是对样品进行分类;R型聚类分析的目的是(1)可以了解变量间及变量组合间的亲疏关系。(2)对变量进行分类。(3)根据分类结果及它们之间的关系,在每一类中选择有代表性的变量作为重要变量,利用少数几个重要变量进一步作分析计算;Q型聚类分析的目的主要是对样品进行分类。10、线性回归分析的主要内容及应用中应注意的问题答:线性回归
此文档下载收益归作者所有