(北京市)2014年高考真题数学(文)试题

(北京市)2014年高考真题数学(文)试题

ID:42174054

大小:834.66 KB

页数:8页

时间:2019-09-09

(北京市)2014年高考真题数学(文)试题_第1页
(北京市)2014年高考真题数学(文)试题_第2页
(北京市)2014年高考真题数学(文)试题_第3页
(北京市)2014年高考真题数学(文)试题_第4页
(北京市)2014年高考真题数学(文)试题_第5页
资源描述:

《(北京市)2014年高考真题数学(文)试题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2014年普通高等学校招生全国统一考试北京卷文科数学本试卷共6页,150分。考试时长120分钟,。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。在每小题列出的4个选项中,选出符合题目要求的一项。1.若集合,,则()A.B.C.D.2.下列函数中,定义域是且为增函数的是()A.B.C.D.3.已知向量,,则()A.B.C.D.4.执行如图所示的程序框图,输出的值为()A.B.C.D.5.设、是实数,则“”是“”的()A.充分而不必要条件B.必要而不必要条件C.充

2、分必要条件D.既不充分学科网不必要条件6.已知函数,在下列区间中,包含零点的区间是()A.B.C.D.7.已知圆和两点,,若圆上存在点,使得,则的最大值为()A.B.C.D.8.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率与加工时间(单位:分钟)学科网满足的函数关系(、、是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.分钟B.分钟C.分钟D.分钟北京凤凰学易科技有限公司电话:010-58425260邮箱:editor@zxxk.com学科网©版权所有第2部分(非选择题共110分)二、填

3、空题共6小题,每小题5分,共30分。9.若,则.10.设双曲线的两个焦点为,,一个顶点式,则的方程为.11.某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为.12.在中,,,,则;.13.若、满足,则的最小值为.14.顾客请一位工艺师把、两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件颜料先由徒弟完成粗加工,学科网再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序时间原料粗加工精加工原料原料则最短交货期为工作日.三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。15.

4、(本小题满分13分)已知是等差数列,满足,,数列满足,,北京凤凰学易科技有限公司电话:010-58425260邮箱:editor@zxxk.com学科网©版权所有且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.16.(本小题满分13分)函数的部分图象如图所示.(1)写出的最小正周期及图中、的值;(2)求在区间上的最大值和最小值.17.(本小题满分14分)如图,在三棱柱中,侧棱垂直于底面,,,、分别为、的中点.(1)求证:平面平面;(2)求证:平面;(3)求三棱锥的体积.18.(本小题满分13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(

5、单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:北京凤凰学易科技有限公司电话:010-58425260邮箱:editor@zxxk.com学科网©版权所有(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)19.(本小题满分14分)已知椭圆C:.(1)求椭圆C的离心率;(2)设O为原点,若点A在直线,点B在椭圆C上,且,求线段AB长度的最小值.20.(本小

6、题满分13分)已知函数.(1)求在区间上的最大值;(2)若过点存在3条直线与曲线相切,求t的取值范围;(3)问过点分别存在几条直线与曲线相切?(只需写出结论)数学(文)(北京卷)参考答案北京凤凰学易科技有限公司电话:010-58425260邮箱:editor@zxxk.com学科网©版权所有一、选择题(1)C(2)B(3)A(4)C(5)D(6)C(7)B(8)B二、填空题(9)2(10)(11)(12)2,(13)1(14)42三、解答题(15)解:(I)设等差数列的公差为,由题意得:,所以,设等比数列的公比为,由题意得:,解得.所以,从而.(II)由(1)知,

7、,数列的前n项和为,数列的前n项和为,所以数列的前n项和为.(16)解:(I)的最小正周期为,,.(II)因为,所以,于是当,即时,取得最大值0;当,即时,取得最小值.(17)解:(I)在三棱柱中,底面ABC,所以AB,又因为AB⊥BC,所以AB⊥平面,所以平面平面.(II)取AB中点G,连结EG,FG,因为E,F分别是、的中点,所以FG∥AC,且FG=AC,因为AC∥,且AC=,所以FG∥,且FG=,所以四边形为平行四边形,所以EG,北京凤凰学易科技有限公司电话:010-58425260邮箱:editor@zxxk.com学科网©版权所有又因为EG平面ABE,平

8、面ABE,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。