数学总复习知识点

数学总复习知识点

ID:41722214

大小:49.02 KB

页数:10页

时间:2019-08-30

数学总复习知识点_第1页
数学总复习知识点_第2页
数学总复习知识点_第3页
数学总复习知识点_第4页
数学总复习知识点_第5页
资源描述:

《数学总复习知识点》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、总复习知识点第一章第一节(P4)1•对应法则题型如例2例2设/(x-1)=x2-4x,求/(兀).解令x-l=t,贝心=/+1,所以口)=(!+1)2_4(『+1)=尸_2—3所以/(x)=x2-2x-3假如改成设/(x+1)=%2-4x,求/(%).或/(x-l)=x2-4x+2,求/(%).是否会做?2.定义域3例:求函数y=ln(4兀+3)的定义域4兀+3>0,兀〉一才或改成y=ln(5兀+6)第一章第三节(P18)3.数列求极限lim7?T83n3n+2=1或lim7?Tg3n23n2+2=1或lim3n3n2+2=0第一章第五节(P32)

2、4.无穷小的定义函数X+l9当XT1时,不是无穷小函数兀一1,当XT1时,是无穷小5•无穷小与有界函数之积仍为无穷小(P33)sinx例3求lim沁・解因为lim丄=0,所以丄为xt+8时的无穷小量,又因为<1,所以沁仍为XT+OO时的无穷小量,所以lim沁二0・XXTZX把上题改成limCQSA=0或改成limxcos兀=0或limxsinx=0XT+oo兀X—>0XT()6•求极限(P39)例3求凹g・兀T3时,分子及分母的极限都是零,于是分子、分母不能分别取极限.因分子及分母有公因子兀-3,而兀t3时,"3,兀一3工0,可约去这个不为零的公因

3、子•所以..X—3Iim—=lim”t3f—9xt3x-311(x+3)(x-3)~™T+3_6改成]im尤二匹=lim(KT=lim兀+4=8或xt4X—4xt4JV—4at4lim=lim二limx+1二2。XT1X~ATIX~XT1第一章第七节(P43)7.两个重要极限lim沁=1或lim沁=1或lim沁二丄Z)xz2xz2x2limJVT8

4、例1函数〉=J在点兀=1没有定义,但x-1limXTl兀Ix-所以兀=1为该函数的可去间断点.函数在兀=1不连续是因为在兀=1没有定义。x-l,x<0例4函数/(x)=0当兀一>0时,limf(x)=lim(兀一1)=一1,limf(x)=lim(兀+1)=1,XT(T7XT(rXT。*、7XTO*左极限与有极限都存在,但不相等,所以点x=0为该函数的跳跃间断点.函数在X=0不连续是因为1黒/(X)不存在。第一章第十节(P57)9.初等函数在其定义域内是连续性的limsinx例求limesinx==e=eoXT—2第一章

5、第-一节(P59)10.零点定理证明方程至少有一个根例1证明方程x3-2x-=0在区间(0,2)内至少有一个根.证函数/(x)=x3-2x-1在闭区间[0,2]上连续,又/(0)=-1<0,/(2)=3>0・由零点定理,在(0,2)内至少有一点,使得/(^)=0,即孑―2§—1=0(0<^<2).这等式说明方程扌-2兀-1=0在区间(0,2)内至少有一个根是§・第二章第一节(P66)11•导数的定义已知门3)=2,则悝“苛化一]已知门4)=2,则唧《+牛側12•切线的斜率(P74)求曲线y二/在点(1」)处的切线斜率?例:因为『=(盯=3兀2,由

6、导数的几何意义知,曲线y=F在点(1」)处的切线斜率为几防3叩q=3。例:曲线y=ln(2%)在点卩,()]处的切线斜率?k=$!=7-1=2X=-2rX=-2厶人2第二章第三节(P82)13.复合函数求导例5y=Incos(e'),求包.dx解—=[lncos(eA)J=1C0S(X)cos(ex)l岀口(町=_皿(小・cos((?x)I)例如:y=ln(sinx+l)、cosxsinx+1y=ln(2x+3)22x+3第二章第五节(P89)14.会求高阶导数例2求指数函数丿=严(。为常数)与y二/的斤阶导数解y二3/=,/=(Te^,二/严',

7、依此类推,可得y(")=NZJ即特别地,d=l时,比如说(『)㈣"第二章第六节(P93)13.隐函数求导例1求由方程〒+才=1所确定的隐函数y的导数.解把方程两端分别对兀求导,记住y是兀的函数,得2x+2>y=0,由此得y(yH0)・y例2求由方程ey-^xy-e=0所确定的隐函数y的导数.解把方程两端分别对X求导,得ey・y,+y+Ay=0,由此得y=—,G+rho).x+e第二章第七节(P98)14.可导与可微的关系定理函数y=f(x)在点兀可微的充分必要条件是函数/(兀)在点兀可导,且当/(x)在点兀可微时,有dy=fx)^x.可导是可微的

8、充要条件,同时可微是可导的充要条件15.微分的定义例2y=sin(2x+1),求〃y•解(1)用公式=fx)clx,得d

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。