资源描述:
《matlab算法程序解方程》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一般的代数方程函数solve用于求解一般代数方程的根,假定S为符号表达式,命令solve(S)求解表达式等于0的根,也可以再输入一个参数指定未知数。例:symsabcxS=a*x^2+b*x+c;solve(S)ans=[1/2/a*(-b+(b^2-4*a*c)^(1/2))][1/2/a*(-b-(b^2-4*a*c)^(1/2))]b=solve(S,b)b=-(a*x^2+c)/x线性方程组线性方程组的求解问题可以表述为:给定两个矩阵A和B,求解满足方程AX=B或XA=B的矩阵X。方程AX=B的解用X=AB或X=inv(A)*B表示;方程XA=B的解用X=B/A或X=B*inv(A)
2、表示。不过斜杠和反斜杠运算符计算更准确,占用内存更小,算得更快。线性微分方程函数dsolve用于线性常微分方程(组)的符号求解。在方程中用大写字母D表示一次微分,D2,D3分别表示二阶、三阶微分,符号D2y相当于y关于t的二阶导数。函数dsolve的输出方式格式说明y=dsolve(‘Dyt=y0*y’)一个方程,一个输出参数[u,v]=dsolve(‘Du=v’,’Dv=u’)两个方程,两个输出参数S=dsolve(‘Df=g’,’Dg=h’,’Dh=-2*f‘)方程组的解以S.fS.gS.h结构数组的形式输出结果:u=tg(t-c)解输入命令:y=dsolve('D2y+4*Dy+29*y
3、=0','y(0)=0,Dy(0)=15','x')结果为:y=3e-2xsin(5x)解输入命令:[x,y,z]=dsolve('Dx=2*x-3*y+3*z','Dy=4*x-5*y+3*z','Dz=4*x-4*y+2*z','t');x=simple(x)%将x化简y=simple(y)z=simple(z)结果为:x=(c1-c2+c3+c2e-3t-c3e-3t)e2ty=-c1e-4t+c2e-4t+c2e-3t-c3e-3t+(c1-c2+c3)e2tz=(-c1e-4t+c2e-4t+c1-c2+c3)e2t非线性微分方程[t,x]=solver(’f’,ts,x0,opti
4、ons)ode45ode23ode113ode15sode23s由待解方程写成的m-文件名ts=[t0,tf],t0、tf为自变量的初值和终值函数的初值ode23:组合的2/3阶龙格-库塔-芬尔格算法ode45:运用组合的4/5阶龙格-库塔-芬尔格算法自变量值函数值用于设定误差限(缺省时设定相对误差10-3,绝对误差10-6),命令为:options=odeset(’reltol’,rt,’abstol’,at),rt,at:分别为设定的相对误差和绝对误差.1、在解n个未知函数的方程组时,x0和x均为n维向量,m-文件中的待解方程组应以x的分量形式写成.2、使用Matlab软件求数值解时,高阶
5、微分方程必须等价地变换成一阶微分方程组.注意:解:令y1=x,y2=y1’1、建立m-文件vdp1000.m如下:functiondy=vdp1000(t,y)dy=zeros(2,1);dy(1)=y(2);dy(2)=1000*(1-y(1)^2)*y(2)-y(1);2、取t0=0,tf=3000,输入命令:[T,Y]=ode15s('vdp1000',[03000],[20]);plot(T,Y(:,1),'-')3、结果如图解1、建立m-文件rigid.m如下:functiondy=rigid(t,y)dy=zeros(3,1);dy(1)=y(2)*y(3);dy(2)=-y(1)
6、*y(3);dy(3)=-0.51*y(1)*y(2);2、取t0=0,tf=12,输入命令:[T,Y]=ode45('rigid',[012],[011]);plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')3、结果如图图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.