An Introduction to RBM

An Introduction to RBM

ID:40878526

大小:438.11 KB

页数:23页

时间:2019-08-09

An Introduction to RBM_第1页
An Introduction to RBM_第2页
An Introduction to RBM_第3页
An Introduction to RBM_第4页
An Introduction to RBM_第5页
资源描述:

《An Introduction to RBM》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AnIntroductiontoRestrictedBoltzmannMachinesAsjaFischer1,2andChristianIgel21Institutf¨urNeuroinformatik,Ruhr-Universit¨atBochum,Germany2DepartmentofComputerScience,UniversityofCopenhagen,DenmarkAbstract.RestrictedBoltzmannmachines(RBMs)areprobabilisticgraphicalmodelsthatcanbeinterpretedassto

2、chasticneuralnetworks.Theincreaseincomputationalpowerandthedevelopmentoffasterlearn-ingalgorithmshavemadethemapplicabletorelevantmachinelearningproblems.Theyattractedmuchattentionrecentlyafterbeingproposedasbuildingblocksofmulti-layerlearningsystemscalleddeepbeliefnet-works.Thistutorialintr

3、oducesRBMsasundirectedgraphicalmodels.Thebasicconceptsofgraphicalmodelsareintroducedfirst,however,basicknowledgeinstatisticsispresumed.DifferentlearningalgorithmsforRBMsarediscussed.AsmostofthemarebasedonMarkovchainMonteCarlo(MCMC)methods,anintroductiontoMarkovchainsandtherequiredMCMCtechniqu

4、esisprovided.1IntroductionBoltzmannmachines(BMs)havebeenintroducedasbidirectionallyconnectednetworksofstochasticprocessingunits,whichcanbeinterpretedasneuralnet-workmodels[1,16].ABMcanbeusedtolearnimportantaspectsofanunknownprobabilitydistributionbasedonsamplesfromthisdistribution.Ingeneral

5、,thislearningprocessisdifficultandtime-consuming.However,thelearningproblemcanbesimplifiedbyimposingrestrictionsonthenetworktopology,whichleadsustorestrictedBoltzmannmachines(RBMs,[34]),thetopicofthistutorial.A(restricted)BMisaparameterizedgenerativemodelrepresentingaprob-abilitydistribution.G

6、ivensomeobservations,thetrainingdata,learningaBMmeansadjustingtheBMparameterssuchthattheprobabilitydistributionrepre-sentedbytheBMfitsthetrainingdataaswellaspossible.Boltzmannmachinesconsistoftwotypesofunits,socalledvisibleandhiddenneurons,whichcanbethoughtofasbeingarrangedintwolayers.Thevis

7、ibleunitsconstitutethefirstlayerandcorrespondtothecomponentsofanobservation(e.g.,onevisibleunitforeachpixelofadigitalinputimage).Thehiddenunitsmodeldependenciesbetweenthecomponentsofobservations(e.g.,dependenciesbetweenpixelsinimages).Theycanbeviewedasnon

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。