全等三角形经典题型50

全等三角形经典题型50

ID:40612141

大小:67.00 KB

页数:4页

时间:2019-08-05

全等三角形经典题型50_第1页
全等三角形经典题型50_第2页
全等三角形经典题型50_第3页
全等三角形经典题型50_第4页
资源描述:

《全等三角形经典题型50》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、全等三角形证明经典题18.(5分)如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.19.(5分)如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA21.(6分)如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B22.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.23.(7

2、分)已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.25、(10分)如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。26、(10分)如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。求证:AM是△ABC的中线。27、(10分)如图

3、:在△ABC中,BA=BC,D是AC的中点。求证:BD⊥AC。28、(10分)AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CF29、(12分)如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。参考答案(不全面)18.证明:延长AD至H交BC于H;BD=DC;所以:∠DBC=∠角DCB;∠1=∠2;∠DBC+∠1=∠角DCB+∠2;∠ABC=∠ACB;所以:AB=AC;三角形ABD全等于三角形ACD;∠BAD=∠CAD;AD是等腰三角形的顶角平分线所以:AD垂直BC19.证明:因为AOM与MOB都为直角三角形、共用OM,且∠MOA=∠MOB所以MA=MB所以∠MA

4、B=∠MBA因为∠OAM=∠OBM=90度所以∠OAB=90-∠MAB∠OBA=90-∠MBA所以∠OAB=∠OBA21.证明:在AB上找点E,使AE=AC∵AE=AC,∠EAD=∠CAD,AD=AD∴△ADE≌△ADC。DE=CD,∠AED=∠C∵AB=AC+CD,∴DE=CD=AB-AC=AB-AE=BE∠B=∠EDB∠C=∠B+∠EDB=2∠B22.分析:通过证明两个直角三角形全等,即Rt△DEC≌Rt△BFA以及垂线的性质得出四边形BEDF是平行四边形.再根据平行四边形的性质得出结论.解答:解:(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,,∴∠DEC=∠BFA=90°,

5、DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF;(2)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF.23.(1)DC∥AE,且DC=AE,所以四边形AECD是平行四边形。于是知AD=EC,且∠EAD=∠BEC。由AE=BE,所以△AED≌△EBC。(2)△AEC、△A

6、CD、△ECD都面积相等。24.证明:延长BA、CE,两线相交于点F∵BE⊥CE∴∠BEF=∠BEC=90°在△BEF和△BEC中∠FBE=∠CBE,BE=BE,∠BEF=∠BEC∴△BEF≌△BEC(ASA)∴EF=EC∴CF=2CE∵∠ABD+∠ADB=90°,∠ACF+∠CDE=90°又∵∠ADB=∠CDE∴∠ABD=∠ACF在△ABD和△ACF中∠ABD=∠ACF,AB=AC,∠BAD=∠CAF=90°∴△ABD≌△ACF(ASA)∴BD=CF∴BD=2CE26证明:∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴BM=CM∴AM是△ABC的中线.

7、27.三角形ABD和三角形BCD的三条边都相等,它们全等,所以角ADB和角CDB相等,它们的和是180度,所以都是90度,BD垂直AC28.证明:在△ABD与△ACD中AB=ACBD=DCAD=AD∴△ABD≌△ACD∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF与△FDC中BD=DC∠BDF=∠FDCDF=DF∴△FBD≌△FCD∴BF=FC29.因为AB=DCAE=DF,CE=FBCE+EF=EF+FB所以三角形

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。