A fast and elitist multiobjective genetic algorithm NSGA-II

A fast and elitist multiobjective genetic algorithm NSGA-II

ID:40556874

大小:714.13 KB

页数:16页

时间:2019-08-04

A fast and elitist multiobjective genetic algorithm NSGA-II_第1页
A fast and elitist multiobjective genetic algorithm NSGA-II_第2页
A fast and elitist multiobjective genetic algorithm NSGA-II_第3页
A fast and elitist multiobjective genetic algorithm NSGA-II_第4页
A fast and elitist multiobjective genetic algorithm NSGA-II_第5页
资源描述:

《A fast and elitist multiobjective genetic algorithm NSGA-II》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、182IEEETRANSACTIONSONEVOLUTIONARYCOMPUTATION,VOL.6,NO.2,APRIL2002AFastandElitistMultiobjectiveGeneticAlgorithm:NSGA-IIKalyanmoyDeb,AssociateMember,IEEE,AmritPratap,SameerAgarwal,andT.MeyarivanAbstract—Multiobjectiveevolutionaryalgorithms(EAs)[20],[26].Theprimaryreasonforthisistheir

2、abilitytofindthatusenondominatedsortingandsharinghavebeencriti-multiplePareto-optimalsolutionsinonesinglesimulationrun.cizedmainlyfortheir:1)(3)computationalcomplexitySinceevolutionaryalgorithms(EAs)workwithapopulationof(whereisthenumberofobjectivesandisthepopulationsolutions,asimp

3、leEAcanbeextendedtomaintainadiversesize);2)nonelitismapproach;and3)theneedforspecifyingasharingparameter.Inthispaper,wesuggestanondominatedsetofsolutions.Withanemphasisformovingtowardthetruesorting-basedmultiobjectiveEA(MOEA),callednondominatedPareto-optimalregion,anEAcanbeusedtofi

4、ndmultiplesortinggeneticalgorithmII(NSGA-II),whichalleviatesallPareto-optimalsolutionsinonesinglesimulationrun.theabovethreedifficulties.Specifically,afastnondominated2Thenondominatedsortinggeneticalgorithm(NSGA)pro-sortingapproachwith()computationalcomplexityispresented.Also,asele

5、ctionoperatorispresentedthatcreatesaposedin[20]wasoneofthefirstsuchEAs.Overtheyears,thematingpoolbycombiningtheparentandoffspringpopulationsmaincriticismsoftheNSGAapproachhavebeenasfollows.andselectingthebest(withrespecttofitnessandspread)1)Highcomputationalcomplexityofnondominated

6、sorting:solutions.SimulationresultsondifficulttestproblemsshowthattheproposedNSGA-II,inmostproblems,isabletofindmuchThecurrently-usednondominatedsortingalgorithmhasabetterspreadofsolutionsandbetterconvergencenearthetruecomputationalcomplexityof(whereisthePareto-optimalfrontcompared

7、toPareto-archivedevolutionnumberofobjectivesandisthepopulationsize).Thisstrategyandstrength-ParetoEA—twootherelitistMOEAsthatmakesNSGAcomputationallyexpensiveforlargepopu-payspecialattentiontocreatingadiversePareto-optimalfront.lationsizes.ThislargecomplexityarisesbecauseoftheMoreo

8、ver,wemodifythedefinitiono

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。