RDD:基于内存的集群计算容错抽象

RDD:基于内存的集群计算容错抽象

ID:40492169

大小:62.67 KB

页数:32页

时间:2019-08-03

RDD:基于内存的集群计算容错抽象_第1页
RDD:基于内存的集群计算容错抽象_第2页
RDD:基于内存的集群计算容错抽象_第3页
RDD:基于内存的集群计算容错抽象_第4页
RDD:基于内存的集群计算容错抽象_第5页
资源描述:

《RDD:基于内存的集群计算容错抽象》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、RDD:基于内存的集群计算容错抽象 摘要本文提出了分布式内存抽象的概念——弹性分布式数据集(RDD,ResilientDistributedDatasets),它具备像MapReduce等数据流模型的容错特性,并且允许开发人员在大型集群上执行基于内存的计算。现有的数据流系统对两种应用的处理并不高效:一是迭代式算法,这在图应用和机器学习领域很常见;二是交互式数据挖掘工具。这两种情况下,将数据保存在内存中能够极大地提高性能。为了有效地实现容错,RDD提供了一种高度受限的共享内存,即RDD是只读的,并且只能通过其他RDD上的批量操作来创建。尽管如此,R

2、DD仍然足以表示很多类型的计算,包括MapReduce和专用的迭代编程模型(如Pregel)等。我们实现的RDD在迭代计算方面比Hadoop快20多倍,同时还可以在5-7秒内交互式地查询1TB数据集。1.引言无论是工业界还是学术界,都已经广泛使用高级集群编程模型来处理日益增长的数据,如MapReduce和Dryad。这些系统将分布式编程简化为自动提供位置感知性调度、容错以及负载均衡,使得大量用户能够在商用集群上分析超大数据集。大多数现有的集群计算系统都是基于非循环的数据流模型。从稳定的物理存储(如分布式文件系统)中加载记录,记录被传入由一组确定性

3、操作构成的DAG,然后写回稳定存储。DAG数据流图能够在运行时自动实现任务调度和故障恢复。尽管非循环数据流是一种很强大的抽象方法,但仍然有些应用无法使用这种方式描述。我们就是针对这些不太适合非循环模型的应用,它们的特点是在多个并行操作之间重用工作数据集。这类应用包括:(1)机器学习和图应用中常用的迭代算法(每一步对数据执行相似的函数);(2)交互式数据挖掘工具(用户反复查询一个数据子集)。基于数据流的框架并不明确支持工作集,所以需要将数据输出到磁盘,然后在每次查询时重新加载,这带来较大的开销。我们提出了一种分布式的内存抽象,称为弹性分布式数据集(

4、RDD,ResilientDistributedDatasets)。它支持基于工作集的应用,同时具有数据流模型的特点:自动容错、位置感知调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,只能通过在其他RDD执行确定的转换操作(如map、join和groupby)而创建,然而这些限制使得实现容错的开销很低。与分布式共享内存系统需要付出高昂代价的检查点和回滚机制不同,RDD通过Lineage来重建丢失的分区

5、:一个RDD中包含了如何从其他RDD衍生所必需的相关信息,从而不需要检查点操作就可以重构丢失的数据分区。尽管RDD不是一个通用的共享内存抽象,但却具备了良好的描述能力、可伸缩性和可靠性,但却能够广泛适用于数据并行类应用。第一个指出非循环数据流存在不足的并非是我们,例如,Google的Pregel[21],是一种专门用于迭代式图算法的编程模型;Twister[13]和HaLoop[8],是两种典型的迭代式MapReduce模型。但是,对于一些特定类型的应用,这些系统提供了一个受限的通信模型。相比之下,RDD则为基于工作集的应用提供了更为通用的抽象,

6、用户可以对中间结果进行显式的命名和物化,控制其分区,还能执行用户选择的特定操作(而不是在运行时去循环执行一系列MapReduce步骤)。RDD可以用来描述Pregel、迭代式MapReduce,以及这两种模型无法描述的其他应用,如交互式数据挖掘工具(用户将数据集装入内存,然后执行ad-hoc查询)。Spark是我们实现的RDD系统,在我们内部能够被用于开发多种并行应用。Spark采用Scala语言[5]实现,提供类似于DryadLINQ的集成语言编程接口[34],使用户可以非常容易地编写并行任务。此外,随着Scala新版本解释器的完善,Spark

7、还能够用于交互式查询大数据集。我们相信Spark会是第一个能够使用有效、通用编程语言,并在集群上对大数据集进行交互式分析的系统。我们通过微基准和用户应用程序来评估RDD。实验表明,在处理迭代式应用上Spark比Hadoop快高达20多倍,计算数据分析类报表的性能提高了40多倍,同时能够在5-7秒的延时内交互式扫描1TB数据集。此外,我们还在Spark之上实现了Pregel和HaLoop编程模型(包括其位置优化策略),以库的形式实现(分别使用了100和200行Scala代码)。最后,利用RDD内在的确定性特性,我们还创建了一种Spark调试工具rd

8、dbg,允许用户在任务期间利用Lineage重建RDD,然后像传统调试器那样重新执行任务。本文首先在第2部分介绍了RDD的概念,然后第3

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。