资源描述:
《robust M-estimation for array processing_ a random matrix approach》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、1RobustM-EstimationforArrayProcessing:ARandomMatrixApproachRomainCouillet1,Fred´ericPascal´2,andJackW.Silverstein31Telecommunicationdepartment,Supelec,GifsurYvette,France.´2SONDRALaboratory,Supelec,GifsurYvette,France.´3DepartmentofMathematics,NorthCarolinaStateUniversity
2、,NC,USA.Abstract—Thisarticlestudiesthelimitingbehaviorofarobustrecognizedinadaptiveradarandsonarprocessing,whereM-estimatorofpopulationcovariancematricesasboththethesignalsunderstudyarecharacterizedbyimpulsivenoisenumberofavailablesamplesandthepopulationsizearelarge.andou
3、tlyingdata.RobustestimationtheoryaimsattacklingUsingtoolsfromrandommatrixtheory,weprovethatthethisproblem[5].Amongothersolutions,theso-calledrobustdifferencebetweenthesamplecovariancematrixand(ascaledversionof)therobustM-estimatortendstozeroinspectralnorm,M-estimatorsofth
4、epopulationcovariancematrix,originallyalmostsurely.ThisresultisappliedtoprovethatrecentsubspaceintroducedbyHuber[4]andinvestigatedintheseminalworkmethodsarisingfromrandommatrixtheorycanbemaderobustofMaronna[6],haveimposedthemselvesasanappealingwithoutalteringtheirfirstorde
5、rbehavior.alternativetotheSCM.Thisestimator,whichwedenoteC^N,isdefinedimplicitlyasasolutionof1I.INTRODUCTIONXnC^=1u1xC^ 1xxxManymulti-variatesignalprocessingdetectionandestima-NnNiNiiitiontechniquesarebasedontheempiricalcovariancematrixofi=1asequenceofsamplesx1;:::;xnf
6、romarandompopulationforuanonnegativefunctionwithspecificproperties.Thesees-vectorx2CN.AssumingE[x]=0andE[xx]=C,theNtimatorsareparticularlyappropriateastheyarethemaximumstronglawoflargenumbersensuresthat,forindependentandlikelihoodestimatesof(ascaledversionof)CNforspecifici
7、denticallydistributed(i.i.d.)samples,distributionsofx,suchasthefamilyofellipticaldistributions1Xn[7].TheyarealsousedtocopewithdistributionsofxwithS^=xx!Cheavier-than-Gaussiantails,suchastheK-distributionoftenNiiNni=1metinthecontextofadaptiveradarprocessingwithimpulsiveal
8、mostsurely(a.s.),asthenumbernofsamplesincreases.clutter[8].Manysubspacemethods,suchastheMUSICalg