robust M-estimation for array processing_ a random matrix approach

robust M-estimation for array processing_ a random matrix approach

ID:40401667

大小:336.83 KB

页数:11页

时间:2019-08-01

robust M-estimation for array processing_ a random matrix approach_第1页
robust M-estimation for array processing_ a random matrix approach_第2页
robust M-estimation for array processing_ a random matrix approach_第3页
robust M-estimation for array processing_ a random matrix approach_第4页
robust M-estimation for array processing_ a random matrix approach_第5页
资源描述:

《robust M-estimation for array processing_ a random matrix approach》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、1RobustM-EstimationforArrayProcessing:ARandomMatrixApproachRomainCouillet1,Fred´ericPascal´2,andJackW.Silverstein31Telecommunicationdepartment,Supelec,GifsurYvette,France.´2SONDRALaboratory,Supelec,GifsurYvette,France.´3DepartmentofMathematics,NorthCarolinaStateUniversity

2、,NC,USA.Abstract—Thisarticlestudiesthelimitingbehaviorofarobustrecognizedinadaptiveradarandsonarprocessing,whereM-estimatorofpopulationcovariancematricesasboththethesignalsunderstudyarecharacterizedbyimpulsivenoisenumberofavailablesamplesandthepopulationsizearelarge.andou

3、tlyingdata.RobustestimationtheoryaimsattacklingUsingtoolsfromrandommatrixtheory,weprovethatthethisproblem[5].Amongothersolutions,theso-calledrobustdifferencebetweenthesamplecovariancematrixand(ascaledversionof)therobustM-estimatortendstozeroinspectralnorm,M-estimatorsofth

4、epopulationcovariancematrix,originallyalmostsurely.ThisresultisappliedtoprovethatrecentsubspaceintroducedbyHuber[4]andinvestigatedintheseminalworkmethodsarisingfromrandommatrixtheorycanbemaderobustofMaronna[6],haveimposedthemselvesasanappealingwithoutalteringtheirfirstorde

5、rbehavior.alternativetotheSCM.Thisestimator,whichwedenoteC^N,isdefinedimplicitlyasasolutionof1I.INTRODUCTIONXnC^=1u1xC^1xxxManymulti-variatesignalprocessingdetectionandestima-NnNiNiiitiontechniquesarebasedontheempiricalcovariancematrixofi=1asequenceofsamplesx1;:::;xnf

6、romarandompopulationforuanonnegativefunctionwithspecificproperties.Thesees-vectorx2CN.AssumingE[x]=0andE[xx]=C,theNtimatorsareparticularlyappropriateastheyarethemaximumstronglawoflargenumbersensuresthat,forindependentandlikelihoodestimatesof(ascaledversionof)CNforspecifici

7、denticallydistributed(i.i.d.)samples,distributionsofx,suchasthefamilyofellipticaldistributions1Xn[7].TheyarealsousedtocopewithdistributionsofxwithS^=xx!Cheavier-than-Gaussiantails,suchastheK-distributionoftenNiiNni=1metinthecontextofadaptiveradarprocessingwithimpulsiveal

8、mostsurely(a.s.),asthenumbernofsamplesincreases.clutter[8].Manysubspacemethods,suchastheMUSICalg

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。