资源描述:
《Kolmogorov Complexity》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、KolmogorovComplexityLanceFortnow1.Introduction010101010101010101010101100111011101011100100110110100110010110100101100Considerthethreestringsshownabove.Althoughallare24-bitbinarystringsandthereforeequallylikelytorepresenttheresultof24
ipsofafaircoin,thereisamarkeddierenc
2、einthecomplexityofdescribingeachofthethree.Therststringcanbefullydescribedbystatingthatitisa24-bitstringwitha1inpositionniffnisodd,thethirdhasthepropertythatpositioniisa1iffthereareanoddnumberof1'sinthebinaryexpansionofpositioni,butthesecondstringappearsnottohaveasimilarl
3、ysimpledescription,andthusinordertodescribethestringwearerequiredtoreciteitscontentsverbatim.Whatisadescription?Fix=f0;1g.Letf:7!.Then(relativetof),adescriptionofastringissimplysomewithf()=:Careisneededinusingthisdenition.Withoutfurtherrestrictions,paradoxesarepo
4、ssible(considerthedescriptionthesmallestpositiveintegernotdescribableinfewerthanftywords").Werestrictfbyrequiringthatitbecomputable,althoughnotnecessarilytotal,butdonotinitiallyconcernourselveswiththetime-complexityoff.WearenowabletodeneKolmogorovComplexityCf:(minfjpj:f
5、(p)=xgifx2ranfDenition1.1.Cf(x)=1otherwiseItwouldbebettertohaveaxednotionofdescriptionratherthanhavingtodenefeachtime.Or,indeed,tohaveanotionofcomplexitythatdoesnotvaryaccordingtowhichfwechoose.Tosomeextentthisproblemisunavoidable,butwecanachieveasortofindependenceifweu
6、seaUniversalTuringMachineThisarticlewaspreparedfromnotesoftheauthortakenbyAmyGaleinKaikoura,January2000.2(UTM).Asiswellknown,thereexistsaTuringMachineUsuchthatforallpartialcomputablef,thereexistsaprogrampsuchthatforally,U(p;y)=f(y).Wedeneapartialcomputablefunctiongbylett
7、ingg(0jpj1py)=U(p;y).Thefollowingbasicfactisnotdiculttosee,andremovesthedependenceonf.ThusitallowsustotalkabouttheKolmogorovcomplexity.Claim1.1.Forallpartialcomputablefthereexistsaconstantcsuchthatforallx,Cg(x)Cf(x)+c.(Infact,c=2jpj+1,wherepisaprogramforf.)NowdeneC(x)=C
8、g(x).Aswehaveseen,thisiswithinaconstantofothercomplexities.WecanalsoextendClaim1.1tobinar