资源描述:
《A Fast Wavelet-Based Reconstruction Method for Magnetic Resonance Imaging (1)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、IEEETRANSACTIONSONMEDICALIMAGING,VOL.30,NO.9,SEPTEMBER20111649AFastWavelet-BasedReconstructionMethodforMagneticResonanceImagingM.Guerquin-Kern*,M.Häberlin,K.P.Pruessmann,andM.UnserAbstract—Inthiswork,weexploitthefactthatwaveletscanThecommonandgenericapp
2、roachtoalleviatetherecon-representmagneticresonanceimageswell,withrelativelyfewstructionproblemistotreatthetaskasaninverseproblem[1].Incoefficients.Weusethispropertytoimprovemagneticresonancethisframework,ill-posednessduetoareducedsamplingdensityimaging(
3、MRI)reconstructionsfromundersampleddatawithisovercomebyintroducingproperregularizationconstraints.arbitraryk-spacetrajectories.ReconstructionisposedasanoptimizationproblemthatcouldbesolvedwiththeiterativeTheyassumeandexploitadditionalknowledgeabouttheob
4、-shrinkage/thresholdingalgorithm(ISTA)which,unfortunately,jectunderinvestigationtorobustifythereconstruction.convergesslowly.Tomaketheapproachmorepractical,weEarliertechniquesusedaquadraticregularizationterm,proposeavariantthatcombinesrecentimprovements
5、inconvexleadingtosolutionsthatexhibitalineardependenceupontheoptimizationandthatcanbetunedtoagivenspecifick-spacemeasurements.Unfortunately,inthecaseofsevereundersam-trajectory.Wepresentamathematicalanalysisthatexplainstheperformanceofthealgorithms.Using
6、simulatedandinvivodata,pling(i.e.,locallylowsamplingdensity)anddependingontheweshowthatournonlinearmethodisfast,asitacceleratesISTAstrengthofregularization,thereconstructedimagesstillsufferbyalmosttwoordersofmagnitude.Wealsoshowthatitremainsfromnoisepro
7、pagation,blurring,ringing,oraliasingerrors.ItcompetitivewithTVregularizationintermsofimagequality.iswellknowninsignalprocessingthattheblurringofedgesIndexTerms—Compressedsensing,fastiterativeshrinkage/canbereducedviatheuseofnonquadraticregularization.In
8、thresholdingalgorithm(FISTA),fastweightediterativeshrinkage/particular,-waveletregularizationhasbeenfoundtooutper-thresholdingalgorithm(FWISTA),iterativeshrinkage/thresh-formclassicallinearalgorithmssuchasWienerfilteringintheoldin