偏微分方程的有限元法求解

偏微分方程的有限元法求解

ID:40091844

大小:823.51 KB

页数:22页

时间:2019-07-20

偏微分方程的有限元法求解_第1页
偏微分方程的有限元法求解_第2页
偏微分方程的有限元法求解_第3页
偏微分方程的有限元法求解_第4页
偏微分方程的有限元法求解_第5页
资源描述:

《偏微分方程的有限元法求解》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、%对于d2u/dx2=f的FEM解算器,其中f=x*(1-x)%%边界条件u(0)=0,u(1)=0.%精确解用以比对xx=linspace(0,1,101);%产生0-1之间的均分指令,101为元素个数uex=(1/6).*xx.^3-(1/12).*xx.^4-(1/12).*xx;%对力项设置高斯点的数目NGf=2;if(NGf==2)xiGf=[-1/sqrt(3);1/sqrt(3)];%ξ1、ξ2的值aGf=[11];else,NGf=1;xiGf=[0.0];aGf=[2.0];end

2、%单元数目Ne=5;%建立网格节点x=linspace(0,1,Ne+1);%零刚性矩阵K=zeros(Ne+1,Ne+1);b=zeros(Ne+1,1);%对所有单元循环计算刚性和残差forii=1:Ne,kn1=ii;kn2=ii+1;x1=x(kn1);x2=x(kn2);dx=x2-x1;%每一个单元的长度dxidx=2/dx;%dξ/dxdxdxi=1/dxidx;%dx/dξdN1dxi=-1/2;%dζ1/dξdN2dxi=1/2;%dζ2/dξdN1dx=dN1dxi*dxidx;

3、%-1/(xj-xj-1)dN2dx=dN2dxi*dxidx;%1/(xj-xj-1)K(kn1,kn1)=K(kn1,kn1)-2*dN1dx*dN1dx*dxdxi;%Rj的第二项K(kn1,kn2)=K(kn1,kn2)-2*dN1dx*dN2dx*dxdxi;K(kn2,kn1)=K(kn2,kn1)-2*dN2dx*dN1dx*dxdxi;K(kn2,kn2)=K(kn2,kn2)-2*dN2dx*dN2dx*dxdxi;%用高斯积分估计力项的积分fornn=1:NGf%NGf=2xiG

4、=xiGf(nn);%得到高斯点的ξN1=0.5*(1-xiG);%求N1和N2(即在xiG的权重/插值)形状函数在ξ的值N2=0.5*(1+xiG);%ζ值fG=xiG*(1-xiG);%对ξ点求fgG1=N1*fG*dxdxi;%在节点处估计权函数在高斯点的被积函数gG2=N2*fG*dxdxi;%估计是个积分值b(kn1)=b(kn1)+aGf(nn)*gG1;%aGf为1b(kn2)=b(kn1)+aGf(nn)*gG2;endend%在x=0处设置Dirichlet条件kn1=1;K(kn

5、1,:)=zeros(size(1,Ne+1));K(kn1,kn1)=1;b(kn1)=0;%在x=1处设置Dirichlet条件kn1=1;K(kn1,:)=zeros(size(1,Ne+1));K(kn1,kn1)=1;b(kn1)=0;%求解方程v=Kb;%v为Kx=b的解plot(x,v,'*-');%画图并比较holdon;plot(xx,uex);holdoff;xlabel('x');ylabel('u');

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。