论文--最小生成树算法及其应用

论文--最小生成树算法及其应用

ID:39995535

大小:269.00 KB

页数:29页

时间:2019-07-16

论文--最小生成树算法及其应用_第1页
论文--最小生成树算法及其应用_第2页
论文--最小生成树算法及其应用_第3页
论文--最小生成树算法及其应用_第4页
论文--最小生成树算法及其应用_第5页
资源描述:

《论文--最小生成树算法及其应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、最小生成树算法及其应用最小生成树算法及其应用【摘要】最小生成树是图论中的经典问题,也是一个重要部分,一般书上往往只介绍求最小生成树的算法,而忽略了更精彩的算法应用部分。本文将对最小生成树算法及其应用作全面的分析说明,使大家对此有更加深刻的认识。本文分三部分:一、基础篇,主要介绍基础概念、求最小生成树的一般算法和常用算法。二、应用篇,具体问题具体分析,侧重于思考和证明的过程。三、总结。【关键字】最小生成树【目录】一、基础篇1.定义2.求最小生成树的一般算法3.常用算法a)Kruskal算法b)Prim算法4.Maintain——IOI2003二、应用篇1.概述2.例题a)R

2、obot——BOI2002b)北极通讯网络——WaterlooUniversity2002三、总结第29页共29页最小生成树算法及其应用【正文】1.基础篇1.1定义在电路设计中,常常需要把一些电子元件的插脚用电线连接起来。如果每根电线连接两个插脚,把所有n个插脚连接起来,只要用n-1根电线就可以了。在所有的连接方案中,我们通常对电线总长度最小的连接方案感兴趣。把问题转化为图论模型就是:一个无向连通图G=(V,E),V是插脚的集合,E是插脚两两之间所有可能的连接的集合。给每条边(u,v)一个权值w(u,v),表示连接它们所需的电线长度。我们的目标就是找到一个无环的边集T,连

3、接其中所有的点且使总权值最小。总权值既然T是连接所有点的无环边集,它一定是一棵树。因为这棵树是从图G中生成出来的,我们把它叫做生成树。如果一棵生成树在所有生成树中总权值最小,我们就把它称作最小生成树。1.2求最小生成树的一般算法解决最小生成树问题有没有一般的方法呢?下面我们就介绍一种贪心算法。该算法设置了集合A,该集合一直是某最小生成树的子集。算法执行的每一步,都要决策是否把边(u,v)添加到集合A中,能够添加的条件是保证A∪{(u,v)}仍然是最小生成树的子集。我们称像(u,v)这样的边为A的安全边,或称这样的边对集合A是安全的。求最小生成树的一般算法流程如下:GENE

4、RIC-MST(G,w)1.A←Ф2.whileA没有形成一棵生成树3.do找出A的一条安全边(u,v)4.A←A∪{(u,v)}5.returnA一开始A为Ф,显然满足最小生成树子集的条件。之后,每一次循环都把一条A的安全边加入A中,A依然是最小生成树。本节的余下部分将提出一条确认安全边的规则(定理1),下一节将具体讨论运用这一规则寻找安全边的两个有效的算法。第29页共29页最小生成树算法及其应用图1一个图的割(S,V-S)首先定义几个概念。有向图G=(V,E)的割(S,V-S)是V的一个分划。当一条边(u,v)∈E的一个端点属于S而另一端点属于V-S,我们说边(u,v

5、)通过割(S,V-S)。若集合A中没有边通过割,就说割不妨碍集合A。如果某边是通过割的具有最小权值的边,则称该边为通过割的一条轻边。如图1,集合S中的结点为黑色结点,集合V-S中的结点为白色结点。连接白色和黑色结点的那些边为通过该割的边。从边上所标的权值看,边(d,c)为通过该割的唯一一条轻边。子集A包含阴影覆盖的那些边,注意,由于A中没有边通过割,所以割(S,V-S)不妨碍A。确认安全边的规则由下列定理给出。定理1设图G(V,E)是一无向连通图,且在E上定义了相应的实数值加权函数w,设A是E的一个子集且包含于G的某个最小生成树中,割(S,V-S)是G的不妨碍A的任意割且

6、边(u,v)是穿过割(S,V-S)的一条轻边,则边(u,v)对集合A是安全的。证明:设T是包含A的一最小生成树。如果T包含轻边(u,v),则T包含A∪{(u,v)},证明就完成了。否则,可设法建立另一棵包含A∪{(u,v)}的最小生成树T’,(u,v)对集合A仍然是安全的。图2最小生成树T’的建立图2示出了最小生成树T’的建立。S中的结点为黑色,V-S中的结点为白色,边(u,v)与T中从u到v的通路P构成一回路。由于边(u,v)通过割(S,V-S),因此在T中的通路P上至少存在一条边也通过这个割。设(x,y)为满足此条件的边。因为割不妨碍A,所以边(x,y)不属于A。又因

7、为(x,y)处于T中从u到v的唯一通路上,所以去掉边(x,y)就会把T分成两个子图。这时加入边(u,v)以形成一新的生成树T’=(T-{(x,y)})∪{(u,v)}。第29页共29页最小生成树算法及其应用下一步我们证明T’是一棵最小生成树。因为(u,v)是通过割(S,V-S)的一条轻边,且边(x,y)也通过割,所以有w(u,v)≤w(x,y),因此w(T’)=w(T)-w(x,y)+w(u,v)≤w(T)。但T是最小生成树,因此T’必定也是最小生成树。又因为T’包含A∪{(u,v)},所以(u,v)对A是安全的。(证毕)通过

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。