[PDF] Study on Target Perception-Oriented Blind Signal Processing Algorithms

[PDF] Study on Target Perception-Oriented Blind Signal Processing Algorithms

ID:39992106

大小:1.76 MB

页数:133页

时间:2019-07-16

[PDF] Study on Target Perception-Oriented Blind Signal Processing Algorithms_第1页
[PDF] Study on Target Perception-Oriented Blind Signal Processing Algorithms_第2页
[PDF] Study on Target Perception-Oriented Blind Signal Processing Algorithms_第3页
[PDF] Study on Target Perception-Oriented Blind Signal Processing Algorithms_第4页
[PDF] Study on Target Perception-Oriented Blind Signal Processing Algorithms_第5页
资源描述:

《[PDF] Study on Target Perception-Oriented Blind Signal Processing Algorithms》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ADissertationSubmittedtoShanghaiJiaoTongUniversityfortheDegreeofPhilosophyDoctorStudyonTargetPerception-OrientedBlindSignalProcessingAlgorithmsAuthor:CONGFengyuSpecialty:SignalProcessingAdvisor:Prof.SHIXizhiSchoolofMechanicalEngineeringShanghaiJiaoTongUnive

2、rsityShanghai,P.R.ChinaMarch,2007StudyonTargetPerception-OrientedBlindSignalProcessingAlgorithmsABSTRACTBlindsignalprocessing(BSP)isaveryhottopicinthesignalprocessingsociety.TheadvantageisthatBSPdoesnotrequireanypriorknowledgeexcepttheindependenceamongdiffe

3、rentsources,soBSPhasbeenappliedinmanydisciplines.ThisdissertationistargetedtothechallengingproblemsinBSP.ToimprovetheperceptioncapacityisthefinalgoalintheapplicationwithBSPenforcingthetargetinperceptionsystems.Twoframeworksaremainlystudied.Oneistheblindsepa

4、rationofconvolutivemixturesinheavyreverberation,whichisthefirsthardproblemthedissertationresolves.Thecomplex-valuedsourceseparationandthepermutationarestudiedfortheblindseparationofconvolutivemixturesinthefrequencydomain.Thesecondistheparticlefilteringbased

5、noisysourceseparation,whichprovidesanovelapproachforthepost-nonlinearandunderdeterminedblindsourceseparationunderthenoisyenvironment.Inthereal-wordapplication,itismainlydiscussedthathowblindseparationofconvolutivemixturesareadoptedinthespeechsourceseparatio

6、nandtheactivesonartargetdetection.Thedissertationfirstdealswiththeblindseparationofcomplex-valuedsources.Aftertheimpropercomplex-valuedvectorandthecharacteristicofpseudo-autocorrelationmatrixareexplored,wefindthatJADE,ComplexFastICA,ComplexICA,SUTandEquivar

7、iantSUTdonotmakefulluseofthegoodcharacteristicsoftheimpropercomplex-valuedvector.Then,basedonthepseudo-autocorrelationmatrix,weconstructasecondorderstatistics(SOS)costfunction.Withthedecentgradientalgorithm,anewSOSbasedblindseparationofcomplex-valuedsources

8、algorithmisinferred.WenameitasStrongSOS.Alongthesameidea,weconstructthecostfunctionbasedontheminimumofthemutualinformationbetweendifferentindependentsources.Intheprocesstoinferthenewalgorithm,weperform

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。