人脸识别技术在公安领域地应用浅析

人脸识别技术在公安领域地应用浅析

ID:39977993

大小:46.35 KB

页数:10页

时间:2019-07-16

人脸识别技术在公安领域地应用浅析_第1页
人脸识别技术在公安领域地应用浅析_第2页
人脸识别技术在公安领域地应用浅析_第3页
人脸识别技术在公安领域地应用浅析_第4页
人脸识别技术在公安领域地应用浅析_第5页
资源描述:

《人脸识别技术在公安领域地应用浅析》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用文档人脸识别公安领域应用模式引言人脸是继指纹之后应用最为广泛的一种生物特征,与指纹相比更加直观、自然。据国际生物识别集团(IBG)发布的《生物识别市场与产业报告2009-2014》报告显示,2014年人脸识别在全球生物特征识别市场中能够占到11.4%。在国内公安领域,人脸识别技术的发展也同样迅猛,近5年已增长到了18%,并且还在持续增长。这些都说明了人脸识别技术在公安领域的应用具有极大的潜力,本文将对人脸识别的技术原理、典型应用和存在的问题进行分析和讨论。一、人脸识别的技术原理及特点1.人脸识别的基本流程人脸识

2、别与其他生物特征识别技术相似,应用过程的基本流程分为离线注册和在线识别两个步骤,流程框图如图1所示。文案大全实用文档  图1人脸识别应用基本流程框图人脸注册过程如图1(a)所示,通常具体步骤为:首先利用可见光成像设备采集注册用的人像;然后利用人脸检测技术从图像中定位并分割出人脸局部图像;最后再利用特征提取技术抽取能够表征人脸图像的数据量,形成特征模板并存储至数据库中。在人脸识别应用中,人脸注册也常称为人脸建模,一般离线进行,例如在进行大规模的人脸图像查询时,都需要事先将人脸图像库全部建模。图1(b)示出了人脸识别的

3、基本流程,特征抽取过程与人脸注册相似,也包括人脸检测和特征提取两个步骤。不同的是在识别过程中,提取到的人脸特征模板不再存储,而是与注册时提取的人脸特征模板进行比对,最终返回比对结果。文案大全实用文档从图1中可以看出,人脸识别过程经历了从人体物理空间到人脸局部图像空间,再到人脸特征数据空间,最后到类别空间的转换。在这个转换过程中,人脸检测、特征提取和特征比对分别起到了关键作用,这也是人脸识别中三项最为关键的技术,本文接下来将对此进行介绍。2.人脸识别的关键技术(1)人脸检测人脸检测是人脸识别的首要步骤,主要目的是从大

4、范围的图像中准确地找到人脸区域,降低背景信息对识别性能的影响。该技术的研究最早可追溯至上世纪70年代,从图像空间的角度出发,目前人脸检测方法大体可分为基于像素域、基于压缩域和两者相结合等三类。基于像素域的人脸检测方法基本原理是在图像的像素空间滑动检测图像块,提取每一图像块的特征并利用先验知识或者统计的方法判断图像块是否是人脸。基于类Haar特征的AdaBoost方法是该类方法的典型代表,检测准确率可达90%以上[1~3]。基于压缩域的人脸检测则是在图像的频域空间滑动检测图像块,利用压缩系数中提取的特征判别是否是人脸

5、区域[4~6]。与基于像素域的方法相比,该类方法省略了解码时间,速度更快。但是由于编码分块的原因,导致压缩域人脸区域的特征不如像素域稳定,从而降低了检测的准确率。文案大全实用文档为了平衡人脸检测的准确率和速度,文献[7]针对人脸识别应用提出了一种JPEG图像的快速人脸检测方法,该方法在压缩码流中提取少量系数,快速恢复低分辨率图像,然后再利用像素域的Adaboost方法检测人脸,综合了压缩域检测速度快和像素域检测精度高优势,对人脸识别应用而言是一种实用的人脸检测方法。总之,人脸检测技术发展到现在已经基本满足人脸识别应

6、用的需求。但是,随着人脸识别技术在视频监控中应用的扩展,捕捉到的人脸姿态各异,多角度人脸快速检测和配置将是人脸识别技术的新需求。(2)特征提取人脸特征提取是指在人脸图像中抽取出能够辨识不同人脸的数据的过程,抽取特征的唯一性越强,则算法的性能越好。人脸特征与指纹和虹膜不同,后两者特征比较稳定,例如指纹特征主要是细节点、虹膜特征主要是图像的纹理。人脸是非刚性的物体,外观特征受人的姿态、表情、饰物、光照等影响较大,如何提取稳定的人脸特征一直是人脸识别领域最为重要的研究课题[8]。文案大全实用文档人脸特征提取方法较多,发展

7、过程大体可分为两个阶段,第一阶段主要以研究理想条件下的人脸特征提取技术为主,基于几何特征的方法和特征脸方法是该阶段的典型代表。基于几何特征的方法是指在人脸图像中检测出眼镜、眉毛、鼻子、嘴巴等部件,将各部件之间的几何关系作为辨识特征。特征脸方法是人脸识别技术发展的一个里程碑,不再应用简单的几何特征,而是在大量的图像数据集中,利用PCA方法计算特征向量也即特征脸,然后将人脸图像映射到各向量上,最终利用向量系数作为人脸特征。该阶段发展的方法对人脸图像要求比较苛刻,对光照、姿态等都有很高的要求,各因素的变化都极易导致识别性

8、能大幅度下降,这使得人脸识别技术很难实际应用。第二阶段主要研究非理想条件下(例如具有光照变化、表情变化、姿态变化、年龄跨度等)鲁棒的特征提取方法。该阶段的研究更具有实用性,以挖掘在高维人脸图像数据中隐含的低维不变特征为目的,采用统计学习的方法努力使不同人脸之间的类间距离最大,同一人脸各种变化下的类内距离最小。出现的方法主要有二维主成份分析方法、二维线性鉴别方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。