How_to_use_the_Bayes_Net_Toolbox

How_to_use_the_Bayes_Net_Toolbox

ID:39839984

大小:752.71 KB

页数:52页

时间:2019-07-12

How_to_use_the_Bayes_Net_Toolbox_第1页
How_to_use_the_Bayes_Net_Toolbox_第2页
How_to_use_the_Bayes_Net_Toolbox_第3页
How_to_use_the_Bayes_Net_Toolbox_第4页
How_to_use_the_Bayes_Net_Toolbox_第5页
资源描述:

《How_to_use_the_Bayes_Net_Toolbox》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、HowtousetheBayesNetToolboxThisdocumentationwaslastupdatedon29October2007.ClickhereforaFrenchversionofthisdocumentation(lastupdatedin2005).InstallationCreatingyourfirstBayesnetoCreatingamodelbyhandoLoadingamodelfromafileoCreatingamodelusingaGUIoGraphvisualizationInfe

2、renceoComputingmarginaldistributionsoComputingjointdistributionsoSoft/virtualevidenceoMostprobableexplanationConditionalProbabilityDistributionsoTabular(multinomial)nodesoNoisy-ornodesoOther(noisy)deterministicnodesoSoftmax(multinomiallogit)nodesoNeuralnetworknodesoRo

3、otnodesoGaussiannodesoGeneralizedlinearmodelnodesoClassification/regressiontreenodesoOthercontinuousdistributionsoSummaryofCPDtypesExamplemodelsoGaussianmixturemodelsoPCA,ICA,andallthatoMixturesofexpertsoHierarchicalmixturesofexpertsoQMRoConditionalGaussianmodelsoOthe

4、rhybridmodelsParameterlearningoLoadingdatafromafileoMaximumlikelihoodparameterestimationfromcompletedataoParameterpriorso(Sequential)BayesianparameterupdatingfromcompletedataoMaximumlikelihoodparameterestimationwithmissingvalues(EM)oParametertyingStructurelearningoEx

5、haustivesearchoK2oHill-climbingoMCMCoActivelearningoStructuralEMoVisualizingthelearnedgraphstructureoConstraint-basedmethodsInferenceenginesoJunctiontreeoVariableeliminationoGlobalinferencemethodsoQuickscoreoBeliefpropagationoSampling(MonteCarlo)oSummaryofinferenceeng

6、inesInfluencediagrams/decisionmakingDBNs,HMMs,KalmanfiltersandallthatCreatingyourfirstBayesnetTodefineaBayesnet,youmustspecifythegraphstructureandthentheparameters.Welookateachinturn,usingasimpleexample(adaptedfromRussellandNorvig,"ArtificialIntelligence:aModernAppro

7、ach",PrenticeHall,1995,p454).GraphstructureConsiderthefollowingnetwork.Tospecifythisdirectedacyclicgraph(dag),wecreateanadjacencymatrix:N=4;dag=zeros(N,N);C=1;S=2;R=3;W=4;dag(C,[RS])=1;dag(R,W)=1;dag(S,W)=1;Wehavenumberedthenodesasfollows:Cloudy=1,Sprinkler=2,Rain=3,We

8、tGrass=4.Thenodesmustalwaysbenumberedintopologicalorder,i.e.,ancestorsbeforedescendants.Foramorecomplicatedgraph,this

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签