资源描述:
《【教学课件】 《菱形的性质与判定(二)》 (数学北师大九上)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、畅言教育本课时编写:合肥市第三十八中学徐晶老师第一单元·特殊平行四边形菱形的性质与判定(二)问题:什么是菱形?菱形有哪些性质?ABCD导入新课菱形的定义:有一组邻边相等的平行四边形.菱形的性质:1.轴对称图形.2.四边相等.3.对角线互相垂直平分.动手做一做思考:剪下来的是什么图形?菱形的判定定理一问题:根据菱形的定义,邻边相等的平行四边形是菱形.除此之外,你认为还有什么条件可以判断一个平行四边形是菱形?讲授新课猜想1:对角线互相垂直的平行四边形是菱形.猜想2:四边相等的四边形是菱形.活动1:用一长一短两根木条,在
2、它们的中点处固定一个小钉,做成一个可转动的十字,四周围上橡皮筋,做成一个四边形.转动木条,木条端点围成的四边形是平行四边形吗?什么时候变成菱形?验证活动1平行四边形菱形通过探究,容易得到:对角线互相垂直的平行四边形是菱形ABCOD已知:右图中四边形ABCD是平行四边形,对角线AC与BD相交于点O,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形.∴OA=OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA=BC.∴四边形ABCD是菱形(菱形的定义).证明猜想1定理对角线互相垂直的平行四边
3、形是菱形.定理运用格式:∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形.(对角线互相垂直的平行四边形为菱形)ABCOD练一练√判断对错:(1)对角线互相垂直的四边形是菱形。()(2)对角线垂直且平分的四边形是菱形。()(3)对角线互相平分的平行四边形是菱形。()(4)对角线垂直且相等的四边形是菱形。()(5)有一条对角线平分一组对角的四边形是菱形。()×××√小刚:分别以A、C为圆心,以大于AC的长为半径作弧,两条弧分别相较于点B,D,依次连接A、B、C、D四点.活动2:已知线段AC,你能用尺
4、规作图的方法作一个菱形ABCD,使AB为菱形的一条对角线?CABD验证活动2思考:1.你是怎么做的,你认为小刚的作法对吗?2.怎么验证四边形ABCD是菱形?提示:AB=BC=CD=AD证明:∵AB=BC=CD=AD;∴AB=CD,BC=AD.∴四边形ABCD是平行四边形(平行四边形的判定).又∵AB=BC,∴四边形ABCD是菱形(菱形的定义).ABCD已知:右图中四边形ABCD,AB=BC=CD=AD.求证:四边形ABCD是菱形.证明猜想2定理四边相等的四边形是菱形.定理的运用格式∵AB=BC=CD=DA,∴四边形
5、ABCD是菱形(四边相等的四边形为菱形).ABCD证明:在△AOB中.∵AB=,OA=2,OB=1.∴AB2=AO2+OB2.∴△AOB是直角三角形,∠AOB是直角.∴AC⊥BD.∴□ABCD是菱形(对角线垂直的平行四边形是菱形).例1:已知:如右图,在□ABCD中,对角线AC与BD相交于点O,AB=,OA=2,OB=1.求证:□ABCD是菱形.ABCOD典例精析2例2:已知:如图,在△ABC,AD是角平分线,点E、F分别在AB、AD上,且AE=AC,EF=ED.求证:四边形CDEF是菱形.ACBEDF证明:∵∠1
6、=∠2,又∵AE=AC,∴△ACD≌△AED(SAS).同理△ACF≌△AEF(SAS).∴CD=ED,CF=EF.又∵EF=ED,∴四边形ABCD是菱形(四边相等的四边形是菱形).1四条边都相等菱形一组邻边相等对角线互相垂直对角线互相平分一组对边平行且相等两组对边分别平行或相等四边形平行四边形两组对角分别相等归纳总结1.下列条件中,不能判定四边形ABCD为菱形的是( )A.AC⊥BD,AC与BD互相平分B.AB=BC=CD=DAC.AB=BC,AD=CD,AC⊥BDD.AB=CD,AD=BC,AC⊥BDABCOD
7、C当堂练习2.如图所示:在□ABCD中添加一个条件使其成为菱形:添加方式1:.添加方式2:.ABCODAB=BCAC⊥BD3.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.ABCDEFO12证明:∵四边形ABCD是平行四边形,∴AE∥FC.∴∠1=∠2.∵EF垂直平分AC,∴AO=OC.∴EO=FO.∴四边形AFCE是平行四边形.又∵EF⊥AC∴四边形AFCE是菱形.ABCDOE4.如图,已知平行四边形ABCD的对角线相交于点O,且AB=BD,DE∥
8、AC,CE∥BD.求证:四边形OCED是菱形.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是平行四边形,AB=BD,∴OC=OD,∴四边形OCED是菱形.5.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.BCADOEMN【分析】根据垂直平