资源描述:
《Euclidean space - Wikipedia, the free encyclopedia》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、3/16/12Euclideanspace-Wikipedia,thefreeencyclopediaEuclideanspaceFromWikipedia,thefreeencyclopediaInmathematics,EuclideanspaceistheEuclideanplaneandthree-dimensionalspaceofEuclideangeometry,aswellasthegeneralizationsofthesenotionstohigherdimensions.Theterm“Eu
2、clidean”distinguishesthesespacesfromthecurvedspacesofnon-EuclideangeometryandEinstein'sgeneraltheoryofrelativity,andisnamedfortheGreekmathematicianEuclidofAlexandria.ClassicalGreekgeometrydefinedtheEuclideanplaneandEuclideanthree-dimensionalspaceusingcertainp
3、ostulates,whiletheotherpropertiesofthesespaceswerededucedastheorems.Inmodernmathematics,itismorecommontodefineEuclideanspaceusingCartesiancoordinatesandtheideasofanalyticgeometry.Thisapproachbringsthetoolsofalgebraandcalculustobearonquestionsofgeometry,andEve
4、rypointinthree-dimensionalhastheadvantagethatitgeneralizeseasilytoEuclideanEuclideanspaceisdeterminedbythreespacesofmorethanthreedimensions.coordinates.Fromthemodernviewpoint,thereisessentiallyonlyoneEuclideanspaceofeachdimension.Indimensiononethisistherealli
5、ne;indimensiontwoitistheCartesianplane;andinhigherdimensionsitistherealcoordinatespacewiththreeormorerealnumbercoordinates.ThusapointinEuclideanspaceisatupleofrealnumbers,anddistancesaredefinedusingtheEuclideandistanceformula.Mathematiciansoftendenotethen-dim
6、ensionalEuclideanspaceby,orsometimesiftheywishtoemphasizeitsEuclideannature.Euclideanspaceshavefinitedimension.Contents1Intuitiveoverview2Realcoordinatespace3Euclideanstructure4TopologyofEuclideanspace5Generalizations6Seealso7ReferencesIntuitiveoverviewOneway
7、tothinkoftheEuclideanplaneisasasetofpointssatisfyingcertainrelationships,expressibleintermsofdistanceandangle.Forexample,therearetwofundamentaloperationsontheplane.Oneistranslation,whichmeansashiftingoftheplanesothateverypointisshiftedinthesamedirectionandbyt
8、hesamedistance.Theotherisrotationaboutafixedpointintheplane,inwhicheverypointintheplaneturnsaboutthatfixedpointthroughthesameangle.OneofthebasictenetsofEuclideangeometryisthattwofigures(t