Financial Economics:solution 2010

Financial Economics:solution 2010

ID:39398314

大小:307.68 KB

页数:65页

时间:2019-07-02

Financial Economics:solution 2010_第1页
Financial Economics:solution 2010_第2页
Financial Economics:solution 2010_第3页
Financial Economics:solution 2010_第4页
Financial Economics:solution 2010_第5页
资源描述:

《Financial Economics:solution 2010》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ThorstenHensandMarcOliverRiegerSolutionsFinancialEconomicsAConciseIntroductiontoClassicalandBehavioralFinanceSPINSpringer’sinternalprojectnumber,ifknownJuly21,2010Springer2DecisionTheory2.1Considerthegambleoftossingafairdie.Ifa6occursthenyouwin6,000,0

2、00monetaryunits.Inanyoftheotheroutcomesyoudon’twinanything.Thislotteryisgivenas1/6oooo6,000,000oooogoOOOOOOO5/6OO0Ifyourinitialwealthisw0=10,000monetaryunitsandyourexpectedutilityfunctionisu(x)=lg(x)(xisyourfinalwealthafterplayingthegame,lgisthelogfunc

3、tioninbase10)thentheutilityoftheabovelotterywillbenX=61u(g)=lg(ai)·,6i=1whereaiisthefinalwealthwhenoutcomeioccurred,forexampleoutcomea1=10,000asyoudon’twinorloseanything.Thevalueoftheexpectedutilityisu(g)=4.46.Ifwewin1,000,000forsure,thisisequivalentto

4、adegenerategamble.Theexpectedutilityofthisgambleisu(g0)=lg(1,010,000)=6.0043.Inthethirdcaseyouhavetopay10monetaryunitstobeabletopartic-ipateinthegambleoffering61monetaryunitswithprobability1/6.Inthiscasethen42DecisionTheory1/6oooo10,051oog00oOooOOOOOO5

5、/6OO9,990Tocomputethecertaintyequivalentofthisgamblewerecallitsdefinitionu(CE)=u(g00)nX=61lg(CE)=lg(ai)·≈4.00.6i=1ThusCE≈104=10,000.Soforsmallgamblesascomparedtoyouroverallwealthyouarepracticallyindifferentbetweenthegambleanditscertaintyequivalent.2.2Le

6、ta,b,cbetheprobabilitymeasurescorrespondingtothelotteriesA,B,C.ThenwehavebyasssumptionZZZuda≥udb≥udc.LetusdenotethethreeintegralsbyU(A),U(B),U(C).Thenthereisobviouslyap∈[0,1]suchthatU(B)=pU(A)+(1−p)U(C).(Ifyoudonotbelievethat,tryp=(U(B)−U(C))/(U(A)−U(

7、C)).)Theutilityofpa+(1−p)cisnowZZZU(pa+(1−p)c)=ud(pa+(1−p)c)=puda+(1−p)udc=pU(A)+(1−p)U(C)=U(B).2.3Tosolvethisexercisewewillmakeuseofthefactthattheslopeoftheutilityfunctionatanypoint(−fforexample)willbehigherthantheslopeofthehypothenuseofthetriangleco

8、nstructedfrom−fandu(−f)thus0u(−f)u(−f)>.−fBytheFundamentalTheoremofCalculuswehavethefollowingrelation:Z−fu0(s)ds=u(−f)−u(−2f).−2f2DecisionTheory5R−f0Solvingforu(−f)weobtainu(−f)=u(−2f)+u(s)ds.Usingthepre-−2fviousinequalitywehavethefollowingrel

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。