语音识别技术综述

语音识别技术综述

ID:39309365

大小:46.01 KB

页数:6页

时间:2019-06-30

语音识别技术综述_第1页
语音识别技术综述_第2页
语音识别技术综述_第3页
语音识别技术综述_第4页
语音识别技术综述_第5页
资源描述:

《语音识别技术综述》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、语音识别技术综述电子信息工程2010级1班郭珊珊【摘要】随着计算机处理能力的迅速提高,语音识别技术得到了飞速发展,该技术的发展和应用改变了人们的生产和生活方式,正逐步成为计算机处理技术中的关键技术。语音技术的应用已经成为一个具有竞争性的新兴高技术产业。【关键词】语音识别;语音识别原理;语音识别发展;产品语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器人自动识别和理解人类口述的语言。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的命令或文本的高新技术。1语音识别的原理语音识别系统本质是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单位元。未知语

2、音经过话筒变换成电信号后加载识别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需特征,在此基础上建立语音识别所需的模板。计算机在识别过程中要根据语音识别的模型,将计算机中存放的语音模板与输入的语音信号的特征进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入语音匹配的模板。然后根据此模板的定义,通过查表可给出计算机的识别结果。这种最优的结果与特征的选择、语音模型的好坏、模板是否准确都有直接的关系。2语音识别系统的分类语音识别系统可以根据对输入语音的限制加以分类。2.1从说话者与识别系统的相关性考虑  可以将识别系统分为3类:(1

3、)特定人语音识别系统:仅考虑对于专人的话音进行识别;(2)非特定人语音系统:识别的语音与人无关,通常要用大量不同人的语音数据库对识别系统进行学习;(3)多人的识别系统:通常能识别一组人的语音,或者成为特定组语音识别系统,该系统仅要求对要识别的那组人的语音进行训练。2.2从说话的方式考虑  也可以将识别系统分为3类:(1)孤立词语音识别系统:孤立词识别系统要求输入每个词后要停顿;(2)连接词语音识别系统:连接词输入系统要求对每个词都清楚发音,一些连音现象开始出现;(3)连续语音识别系统:连续语音输入是自然流利的连续语音输入,大量连音和变音会出现。2.3从识别系统的词汇量大小考虑也可以将

4、识别系统分为3类:(1)小词汇量语音识别系统。通常包括几十个词的语音识别系统。(2)中等词汇量的语音识别系统。通常包括几百个词到上千个词的识别系统。(3)大词汇量语音识别系统。通常包括几千到几万个词的语音识别系统。随着计算机与数字信号处理器运算能力以及识别系统精度的提高,识别系统根据词汇量大小进行分类也不断进行变化。目前是中等词汇量的识别系统到将来可能就是小词汇量的语音识别系统。这些不同的限制也确定了语音识别系统的困难度。3语音识别技术的发展3.1国外研究历史及现状  语音识别的研究工作可以追溯到20世纪50年代AT&T贝尔实验室的Audry系统,它是第一个可以识别十个英文数字的语音

5、识别系统。  但真正取得实质性进展,并将其作为一个重要的课题开展研究则是在60年代末70年代初。这首先是因为计算机技术的发展为语音识别的实现提供了硬件和软件的可能,更重要的是语音信号线性预测编码(LPC)技术和动态时间规整(DTW)技术的提出,有效的解决了语音信号的特征提取和不等长匹配问题。这一时期的语音识别主要基于模板匹配原理,研究的领域局限在特定人,小词汇表的孤立词识别,实现了基于线性预测倒谱和DTW技术的特定人孤立词语音识别系统;同时提出了矢量量化(VQ)和隐马尔可夫模型(HMM)理论。  随着应用领域的扩大,小词汇表、特定人、孤立词等这些对语音识别的约束条件需要放宽,与此同时

6、也带来了许多新的问题:第一,词汇表的扩大使得模板的选取和建立发生困难;第二,连续语音中,各个音素、音节以及词之间没有明显的边界,各个发音单位存在受上下文强烈影响的协同发音(Co-articulation)现象;第三,非特定人识别时,不同的人说相同的话相应的声学特征有很大的差异,即使相同的人在不同的时间、生理、心理状态下,说同样内容的话也会有很大的差异;第四,识别的语音中有背景噪声或其他干扰。因此原有的模板匹配方法已不再适用。  实验室语音识别研究的巨大突破产生于20世纪80年代末:人们终于在实验室突破了大词汇量、连续语音和非特定人这三大障碍,第一次把这三个特性都集成在一个系统中,比较

7、典型的是卡耐基梅隆大学(CarnegieMellonUniversity)的Sphinx系统,它是第一个高性能的非特定人、大词汇量连续语音识别系统。  这一时期,语音识别研究进一步走向深入,其显著特征是HMM模型和人工神经元网络(ANN)在语音识别中的成功应用。HMM模型的广泛应用应归功于AT&TBell实验室Rabiner等科学家的努力,他们把原本艰涩的HMM纯数学模型工程化,从而为更多研究者了解和认识,从而使统计方法成为了语音识别技术的主流。  统计方

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。