欢迎来到天天文库
浏览记录
ID:39205139
大小:166.02 KB
页数:12页
时间:2019-06-27
《duke_math_applied_stochastic_process_class_note 英文文献资料》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、AnidiosyncraticintroductiontostochasticprocessesClassnotesforMath216Notes-Fall2010JonathanC.MattinglySeptember22,20101FiniteStateMarkovChainsAdiscretetimestochasticprocess(Xn)n0isacollectionofrandomvariablesindexedbythenon-negativeintegersZ+=fn2Z:n0g.ThesetinwhichtheXntakevaluesiscalledthest
2、atespaceofthestochasticprocess.Denition.Astochasticprocess(Xn)n0isaMarkovchainifP(Xn+1=jjXn=in;;X0=i0)=P(Xn+1=jjXn=in)forallj;in;;i02I.Denition.AMarkovchainistimehomogeneousifforallk2Z+andi;j2IP(Xk+1=ijXk=j)=P(X1=ijX=j)UnlesswesayotherwisewewillalwaysassumethatallMarkovchainsaretimeho
3、mogeneous.Insuchcaseswewillwritepn(i;j)=P(Xn=jjX0=i)BytheMarkovpropertyonehasP(Xn=xn;Xn 1 xn 1;X1=x1jX0=x0)=p1(xn;xn 1)p1(xn 1;xn 2)p1(x1;x0)WewillbeginbyconcentratingonstochasticprocessesonanitestatespaceI.Withoutlossofgenerality,wecantakethestatespacetobeI=f0;1::::;Ng.1.1Markovchainsa
4、ndmatricesThereisaveryfruitfulcorrespondencebetweennitestateMarkovchainsandMatrices.WebeginbyconsideringrandomvariablesonastatespaceI=f0;:::;N 1g.SucharandomvariableXcanbespeciedcompletelybyNnon-negativenumbersfi:i2IgsuchthatP(X=i)=i:PClearlywehavethati2Ii=1.Itisconvenienttoorganizetheii
5、narow-vector=(0;:::;N 1)2RN.ThevectoriscalledthedistributionoftherandomvariableX.Withthisinmindwemakethefollowingdenition.Denition.Arowvector=(;:::;)2RNcalledadistributionif0.Ifinaddition0N 1iPN 1i=0i=1,itiscalledaprobabilitydistribution.1LetP2RN;Nbeamatrixwithnon-negativeentries.W
6、ewillwritePforthei jthentryofP,thati;jistosay01p0;0p0;N 1B...CP=@......ApN 1;0pN 1;N 1Denition.AsquarematrixPwithnon-negativeentriesiscalledastochasticmatrixifallrowssumPtoone.Thatistosay,forallj,iPji=1.Stochasticmatricesareinone-to-onecorrespondencewithtimehomogeneousMarkovprocessesona
7、nitestatespace.ThecorrespondenceisgivenbyPij=P(X1=jjX0=i)ItthenfollowsthatP(X=jjX=i)=(Pn)n0ijOrinotherwords,thedistributionoftherandomvariableXnwhenconditionedtohaveX0=iisgivenbytherowvector(Pn)bywhichwemeantheithrowofthematrixPn.Inoth
此文档下载收益归作者所有