duke_math_applied_stochastic_process_class_note 英文文献资料

duke_math_applied_stochastic_process_class_note 英文文献资料

ID:39205139

大小:166.02 KB

页数:12页

时间:2019-06-27

duke_math_applied_stochastic_process_class_note 英文文献资料_第1页
duke_math_applied_stochastic_process_class_note 英文文献资料_第2页
duke_math_applied_stochastic_process_class_note 英文文献资料_第3页
duke_math_applied_stochastic_process_class_note 英文文献资料_第4页
duke_math_applied_stochastic_process_class_note 英文文献资料_第5页
资源描述:

《duke_math_applied_stochastic_process_class_note 英文文献资料》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AnidiosyncraticintroductiontostochasticprocessesClassnotesforMath216Notes-Fall2010JonathanC.MattinglySeptember22,20101FiniteStateMarkovChainsAdiscretetimestochasticprocess(Xn)n0isacollectionofrandomvariablesindexedbythenon-negativeintegersZ+=fn2Z:n0g.ThesetinwhichtheXntakevaluesiscalledthest

2、atespaceofthestochasticprocess.De nition.Astochasticprocess(Xn)n0isaMarkovchainifP(Xn+1=jjXn=in;;X0=i0)=P(Xn+1=jjXn=in)forallj;in;;i02I.De nition.AMarkovchainistimehomogeneousifforallk2Z+andi;j2IP(Xk+1=ijXk=j)=P(X1=ijX=j)UnlesswesayotherwisewewillalwaysassumethatallMarkovchainsaretimeho

3、mogeneous.Insuchcaseswewillwritepn(i;j)=P(Xn=jjX0=i)BytheMarkovpropertyonehasP(Xn=xn;Xn1xn1;X1=x1jX0=x0)=p1(xn;xn1)p1(xn1;xn2)p1(x1;x0)Wewillbeginbyconcentratingonstochasticprocessesona nitestatespaceI.Withoutlossofgenerality,wecantakethestatespacetobeI=f0;1::::;Ng.1.1Markovchainsa

4、ndmatricesThereisaveryfruitfulcorrespondencebetween nitestateMarkovchainsandMatrices.WebeginbyconsideringrandomvariablesonastatespaceI=f0;:::;N1g.SucharandomvariableXcanbespeci edcompletelybyNnon-negativenumbersfi:i2IgsuchthatP(X=i)=i:PClearlywehavethati2Ii=1.Itisconvenienttoorganizetheii

5、narow-vector=(0;:::;N1)2RN.ThevectoriscalledthedistributionoftherandomvariableX.Withthisinmindwemakethefollowingde nition.De nition.Arowvector=(;:::;)2RNcalledadistributionif0.Ifinaddition0N1iPN1i=0i=1,itiscalledaprobabilitydistribution.1LetP2RN;Nbeamatrixwithnon-negativeentries.W

6、ewillwritePfortheijthentryofP,thati;jistosay01p0;0p0;N1B...CP=@......ApN1;0pN1;N1De nition.AsquarematrixPwithnon-negativeentriesiscalledastochasticmatrixifallrowssumPtoone.Thatistosay,forallj,iPji=1.Stochasticmatricesareinone-to-onecorrespondencewithtimehomogeneousMarkovprocessesona

7、 nitestatespace.ThecorrespondenceisgivenbyPij=P(X1=jjX0=i)ItthenfollowsthatP(X=jjX=i)=(Pn)n0ijOrinotherwords,thedistributionoftherandomvariableXnwhenconditionedtohaveX0=iisgivenbytherowvector(Pn)bywhichwemeantheithrowofthematrixPn.Inoth

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。