第5章 广义傅里叶变换及其光学实现

第5章 广义傅里叶变换及其光学实现

ID:38525251

大小:716.50 KB

页数:87页

时间:2019-06-14

第5章 广义傅里叶变换及其光学实现_第1页
第5章 广义傅里叶变换及其光学实现_第2页
第5章 广义傅里叶变换及其光学实现_第3页
第5章 广义傅里叶变换及其光学实现_第4页
第5章 广义傅里叶变换及其光学实现_第5页
资源描述:

《第5章 广义傅里叶变换及其光学实现》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第五章广义傅里叶变换及其光学实现7/20/20211第五章广义傅里叶变换及其光学实现5.1引言5.2广义傅里叶变换的定义及性质5.3广义傅里叶变换的本征函数5.4用透镜系统实现广义傅里叶变换的基本光学单元5.5基本光学单元的组合5.6用自聚焦效应光波导实现广义傅里叶变换5.7维格纳变换7/20/20212光学信息处理5.1引言二维傅里叶变换(u,v)=F{o}=∞-∞o(x,y)exp[-i2(ux+vy)]dxdy可以用光学系统近似实现在本章中将研究当物体到透镜的距离d1及输出图像到

2、透镜的距离d2不等于透镜的焦距f时透镜或透镜系统对输入图像的变换.7/20/20213光学信息处理5.1引言研究表明,d1和d2满足一定的条件时,输出平面上将出现o的广义傅里叶变换:(2)又称为分数阶傅里叶变换(fractionalFouriertransform),当=/2时,分数阶傅里叶变换显然变为常规傅里叶变换.7/20/20214光学信息处理数学家的贡献早在1937年,Condon提出了广义傅里叶变换的初步概念.到1980年,Namias完整地提出了广义傅里叶变换的数学定义、性质,讨

3、论了变换的本征函数,并用于处理谐振子的薛定谔方程、格林函数问题、在均匀磁场中的自由电子的能级、在含时间变量的均匀磁场中自由电子薛定谔方程的求解等.1987年,McBride和Kerr进一步研究了广义傅里叶变换,把变换看作是充分光滑的函数构成的向量空间(Frechet空间)中的算子,在此框架内建立了广义傅里叶变换更为严谨、完整的理论系统,这两篇文章至今仍是广义傅里叶变换的理论基础.7/20/20215光学信息处理物理学家的贡献直到90年代,光学科学家和工程师开始关注广义傅里叶变换与光学的关系,与三十

4、年前常规傅里叶变换与光学的结合产生了傅里叶光学的情况非常相似.1993年,Ozaktas和Mendlovic提出用平方折射率光波导(GRIN)来实现广义傅里叶变换;Lohmann,Bernardo等则用透镜系统成功地实现了这一变换;Lohmann还设计了阶数连续可变的广义光学傅里叶变换系统;Bernardo等认为应正确地称这一变换为广义傅里叶变换,而不是分数阶傅里叶变换,因为阶数既可以是整数、分数,还可以是复数.7/20/20216光学信息处理广义傅里叶变换与其他变换关系Lohmann,Mendl

5、ovic阐明了广义傅里叶变换与维格纳变换的关系,指出可以用维格纳空间中的旋转来一般地定义广义傅里叶变换,这一定义与光波在梯度折射率介质中的传播的定义是等价的。Mendlovic等进一步讨论用广义傅里叶变换来表征信号的新方法,以及分数阶光学相关;Dorsch,Bernardo等分别提出了用光学系统实现任意阶傅里叶变换的方案;7/20/20217光学信息处理广义傅里叶变换与其他变换关系Ozaktas等研究了广义傅里叶变换与小波变换的关系,他们认为广义傅里叶变换可以表为小波变换,小波函数具有h(x)=e

6、xp(ix2)的形式.然而该函数是分布在(-∞,∞)上的振荡函数,并不具备小波的特点.易证h(x)的傅里叶变换H(u)=exp(iu),而H(0)≠0,不符合小波变换的相容性条件.因而我们认为广义傅里叶变换只是形式上与小波变换相似.Mendlovic等对变换的形式稍加改换,定义了广义余弦变换,该变换适用于非相干光,在数字成像、非相干光信息处理方面都有潜在的应用.众所周知,夫琅和费衍射可以实现常规的傅里叶变换,Pellat-Finet则探讨了菲涅耳衍射与广义傅里叶变换的关系.7/20/20218

7、光学信息处理傅里叶变换在科学技术的许多领域中有广泛的应用,因此我们可以预料广义傅里叶变换的应用领域将更为宽广.目前,它已成为数学、量子力学中重要的应用工具.本章将研究广义傅里叶变换的数学定义、性质及实现广义傅里叶变换的光学系统,并讨论与广义傅里叶变换有密切关系的维格纳变换.7/20/20219光学信息处理5.2广义傅里叶变换的定义及性质5.2.1广义傅里叶变换的定义仅讨论一维函数的广义傅里叶变换,有关的定义和性质可以直接推广到二维的情况.函数g()的广义傅里叶变换定义为(1)通常称它为g()的

8、广义傅里叶谱,记为G(x).7/20/202110光学信息处理以-代替上式中的,得到(2)称为广义傅里叶变换的阶.可证明F-是F的逆变换,即:F-F{g()}=g(x)(4)7/20/202111光学信息处理广义傅里叶变换的主值区间为∈(-,)。当超出主值区间时,相应的变换可以化成在该区间内的变换。下面将证明这一点.因此F-(>0)实质上只是负阶数的广义傅里叶变换。广义傅里叶变换的一个性质,在于当=/2以及=-/2时化成常规的傅里叶变换及逆变换:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。