New results for Hammerstein system identification

New results for Hammerstein system identification

ID:38287430

大小:537.46 KB

页数:6页

时间:2019-06-03

New results for Hammerstein system identification_第1页
New results for Hammerstein system identification_第2页
New results for Hammerstein system identification_第3页
New results for Hammerstein system identification_第4页
New results for Hammerstein system identification_第5页
资源描述:

《New results for Hammerstein system identification》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、Proceedingsofthe34thConferenceonDecision13ControlNewOrleans,LA-December1995WM08150NewResultsforHammersteinSystemIdentification*SundeepRangant,GregWolodkintandKameshwarPoollatAbstractoriginallyproposedin[9],usesarelaxationapproach.TheLTIsystemandthenonlinearityareindividu-Anovelapproachispres

2、entedfortheanalysisandallylinearlyparametrizedsothatthepredictioner-designofidentificationalgorithmsforHammersteinrorisseparatelylinearintheparametersforeachmodels,whichconsistofastaticnonlinearityfollowedcomponent.TheparameterscanthenbeidentifiedbyanLTIsystem.Weexaminetwoidentificationbymin

3、imizingthepredictionerrorthroughanit-problems.Inthefirstproblem,thesystemisexcitederativesequenceofstandardleast-squareproblems.withwhitenoiseandtheLTIsystemisFIR,andweThedifficultywiththemethodisthatitrequireslin-findasimpleexplicitsolutionfortheoptimalparam-earparametrizationsandtheconverg

4、enceoftheal-eterestimateandshowthatforsufficientlylargedatagorithmisnotfullyunderstood[11].lengthsastandarditerativetechniquegloballycon-vergestothisoptimalvalue.Inthesecondprob-Inthesecondprocedure[2,6,7,10,141,thesystemlem,theLTIsystemisgiveninstate-spaceformandisexcitedbywhitenoiseandthei

5、mpulseresponseweshowthatstandardstate-spacealgorithmscanbecoefficientsoftheLTIsystemcanthenbeobtainedeasilymodifiedtoidentifyHammersteinmodels.frominput-outputcorrelations.WiththeLTIsys-temidentified,thenonlinearitycanbeidentifiedwithleast-squaresmethods.Themaindifficultyhereisthe1Introducti

6、onwhitenoiseinputassumption.Asidefromrestrictingtheinput,theassumptionintroducesstatisticalinef-TheHammersteinmodel,whichconsistsofastaticficiencyduetothenon-whitenessofanyparticularnonlinearityfollowedbyalineartime-invariant(LTI)realizationoftheinputprocessoverafinitetimepe-system,hasproven

7、successfulinprovidingasim-riod.plenonlinearmodelappropriateforawidenumberofapplicationsincludingactuatormodeling,audi-OurapproachfortheFIRidentificationproblemwithtoryandvisualidentification,non-Gaussiansignalwhitenoiseinputbeginssimilartothecorrel

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。