欢迎来到天天文库
浏览记录
ID:37982572
大小:177.00 KB
页数:2页
时间:2019-04-28
《2015学年九年级数学湘教版上册精选教案 1.1 反比例函数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.1反比例函数一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式2.难点:理解反比例函数的概念三教学过程:随着速度的变化,全程所用时间发生怎样的变化?一、创设情景探究问题情境1:当路程一定时,速度与时间成什么关系?(s=vt)当一个长方形面积一定时,长与宽成什么关系?[说明]这个情境是学生熟悉的例子,当中的关系式学生都
2、列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。这一情境为后面学习反比例函数概念作铺垫。情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:[来源:学.科.网]v/(km/h)608090100[来源:学&科&网]120t/h(3)速度v是时间t的函数吗?为什么?情境3:用函数关系式表示下
3、列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;[来源:学。科。网](3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;(4)实数m与n的积为-200,m随n的变化而变化.[来源:Z_xx_k.Com]问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特
4、征?(3)你能归纳出反比例函数的概念吗?一般地,形如y=(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.反比例函数的自变量x的取值范围是不等于0的一切实数二、例题教学例1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)y=;(2)y=;(3)y=-;(4)y=-3;(5)y=;(6)y=+2;(7)y=.例2:在函数y=-1,y=,y=x-1,y=中,y是x的反比例函数的有 个.[说明]这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例
5、函数的变式,如y=kx-1的形式.还有y=-1通分为y=,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=可说成(y+1)与x成反比例.例3:若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式为 .[说明]这个例题引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.[来源:Z+xx+k.Com]三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比
6、例函数.如果是,指出比例系数k的值.(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;(3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.2、下列哪些关系式中的y是x的反比例函数?如果是,比例系数是多少?(1)y=x;(2)y=;(3)xy+2=0;(4)xy=0; (5)x=.3、已知函数y=(m+1)x是反比例函数,则m的值为 .四、课堂小结这
7、节课你学到了什么?还有那些困惑?五、布置作业:见《学练优》本课时练习六、教学反思:
此文档下载收益归作者所有