欢迎来到天天文库
浏览记录
ID:37975527
大小:304.50 KB
页数:38页
时间:2019-06-04
《基于长波红外成像的》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、基于长波红外成像的安防技术研究赵德政(工程硕士)2008年元月红外成像的定义红外线是电磁波谱的一个部分。根据普朗克辐射定理,凡是绝对温度大于零度的物体都能辐射电磁能,物体的辐射强度与温度及表面的辐射能力有关,辐射的光谱分布则与物体温度密切相关。在电磁波谱中,我们把人眼可直接感知的0.4~0.75微米波段称为可见光波段,而把波长从0.75至1000微米的电磁波称为红外波段,红外波段的短波端与可见光红光相邻,长波端与微波相接。红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm之间;远红外线,波长
2、为6.0~l000μm之间。与可见光成像类似,利用红外波段的光线进行成像的技术为红外成像技术。红外技术的起源威廉姆·赫胥尔是一位天文学家,他于1800年发现了红外线。他制作了自己的望远镜,因而他对于各种镜头和镜面非常熟悉。由于太阳光是由各种颜色的光谱组成,并且是一种热量来源,赫胥尔想了解哪一种颜色的光是产生热量的原因。他设计了一个巧妙的实验。他将直射的太阳光穿过一个玻璃棱镜,生成光谱,然后用温度计测量每种颜色的温度。赫胥尔发现从紫色到红色的光谱波段,温度会逐渐升高,而且在红色光谱以上的区域竟然是所有光谱中温度最高的一部分。这部分区域由于其热量
3、辐射,是无法被人类肉眼探测到的,属于不可见光区域。赫胥尔将这种不可见辐射命名为“发热的射线”。现在我们将其称之为红外辐射。红外成像技术的发展——第一代热成像技术的发展始于上世纪50年代,起初只能研制出基于单元器件的热像仪,场频较低,只限于小范围应用。直到20世纪70年代中长波碲镉汞(MCT)材料与光导型多元线列器件工艺成熟之后,热像仪才开始大量生产并装备军队。热像仪的种类繁多,可大致分为二类:一类是通用组件化的热像仪;另一类是按特殊要求设计的热像仪。美国发展的是60元、120元与180元光导线列器件并扫的通用组件化热成像体制。它们的帧频与电视
4、兼容,也是隔行扫描制,每场只有60行、120行和180行,并分别由同步扫描的60元、120元和180元发光二极管对应地显示每帧的图像。在欧洲,以英国的热像仪为代表采用了串并扫体制。它以扫积型光导MCT探测器为基础构成了英国的第二类通用组件热像仪。这是一种完全电视兼容、分辨率与普通电视相同的热像仪。不论串扫、并扫或串并扫体制的热像仪都需要光机扫描。因此,此类热像仪统称为第一代热像仪。第二代不用光机扫描而用红外焦平面阵列(IRFPA)器件成像的热像仪。由于去掉了光机扫描,这种用大规模焦平面成像的传感器被称为凝视传感器。它的体积小、重量轻、可靠性高
5、。在俯仰方向可有数百元以上的探测器阵列,可得到更大张角的视场,还可采用特殊的扫描机构,用比通用热像仪慢得多的扫描速度完成360度全方位扫描以保持高灵敏度。这类器件主要包括InSbIRFPA、HgCdTeIRFPA、SBDFPA、非制冷IRFPA和多量子阱IRFPA等。此类热像仪被称为第二代热像仪。第三代第三代红外热像技术采用的红外焦平面探测器单元数已达到320x240元或更高(即105-106),其性能提高了近3个数量级。目前,3μm-5μm焦平面探测器的单元灵敏度又比8μm-14μm探测器高2~3倍左右。因而,基于320x240元的中波与长
6、波热像仪的总体性能指标相差不大,所以3μm-5μm焦平面探测器在第三代焦平面热成像技术中格外的重要。从长远看,高量子效率、高灵敏度、覆盖中波和长波的HgCdTe焦平面探测器仍是焦平面器件发展的首选。红外系统的组成及原理红外系统一般由红外光学系统、红外探测器、信号放大和处理、显示记录系统等组成。红外光学系统把目标的红外辐射集聚到红外探测器上,并以光谱和空间滤波方式抑制背景干扰。红外探测器将集聚的辐射能转换成电信号。微弱的电信号经放大和处理后,输送给控制和跟踪执行机构或送往显示记录装置。红外光学系统的结构,一般可分为反射式、折射式和折反射式三种,
7、后两种结构需采用具有良好红外光学性能的材料。红外探测器一般有光子探测器、热释电探测器、热敏探测器、电荷耦合器件和红外电真空器件等。有些探测器要在低温下工作,需采用致冷器。致冷器有辐射致冷器、热电致冷器和冷冻剂致冷器等。采用何种致冷器,需视系统结构、所用探测器类型和使用环境而定。置于红外探测器前的光学调制器,将目标辐射进行调制编码,以便从背景中提取目标信号或目标的空间位置信息。前置放大器将探测器输出的微弱信号进行初级放大,并给探测器提供合适的偏置条件。它的噪声指数很低,从而使探测器的噪声有可能成为系统的极限噪声。信号处理系统把前置放大器输出的信
8、号进一步放大和处理,从信号中提取控制装置或显示记录设备所需的信息。一般非成像系统视目标为点辐射源,相应的信号处理、显示记录系统比较简单。红外成像系统,通常需将目标红
此文档下载收益归作者所有