0;(3)p:平行四边形的对边相等;(4)p:$x∈R,x2-x+1=0;分析:(1)ØP:有的人不晨练;(2)$x∈R,x2+x"> 0;(3)p:平行四边形的对边相等;(4)p:$x∈R,x2-x+1=0;分析:(1)ØP:有的人不晨练;(2)$x∈R,x2+x" />
欢迎来到天天文库
浏览记录
ID:37511141
大小:75.00 KB
页数:5页
时间:2019-05-24
《含有一个量词的命题的否定练习题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、含有一个量词的命题的否定例1写出下列全称命题的否定:(1)p:所有人都晨练;(2)p:"xÎR,x2+x+1>0;(3)p:平行四边形的对边相等;(4)p:$x∈R,x2-x+1=0;分析:(1)ØP:有的人不晨练;(2)$x∈R,x2+x+1≤0;(3)存在平行四边形,它的的对边不相等;(4)"xÎR,x2-x+1≠0;例2写出下列命题的否定。(1)所有自然数的平方是正数。(2)任何实数x都是方程5x-12=0的根。(3)对任意实数x,存在实数y,使x+y>0.(4)有些质数是奇数。解:(1)的否定:有些自然数的平方不是正数。(2)的否定:存在实数x不是方程5x-12=
2、0的根。(3)的否定:存在实数x,对所有实数y,有x+y≤0。(4)的否定:所有的质数都不是奇数。解题中会遇到省略了“所有,任何,任意”等量词的简化形式,如“若x>3,则x2>9”。在求解中极易误当为简单命题处理;这种情形下时应先将命题写成完整形式,再依据法则来写出其否定形式。例3写出下列命题的否定。(1)若x2>4则x>2.。(2)若m≥0,则x2+x-m=0有实数根。(3)可以被5整除的整数,末位是0。(4)被8整除的数能被4整除。(5)若一个四边形是正方形,则它的四条边相等。解(1)否定:存在实数,虽然满足>4,但≤2。或者说:存在小于或等于2的数,满足>4。(完整
3、表达为对任意的实数x,若x2>4则x>2)(2)否定:虽然实数m≥0,但存在一个,使+-m=0无实数根。(原意表达:对任意实数m,若m≥0,则x2+x-m=0有实数根。)(3)否定:存在一个可以被5整除的整数,其末位不是0。(4)否定:存在一个数能被8整除,但不能被4整除.(原意表达为所有能被8整除的数都能被4整除)(5)否定:存在一个四边形,虽然它是正方形,但四条边中至少有两条不相等。(原意表达为无论哪个四边形,若它是正方形,则它的四条边中任何两条都相等。)例4写出下列命题的非命题与否命题,并判断其真假性。 (1)p:若x>y,则5x>5y;(2)p:若x2+x﹤2,则
4、x2-x﹤2;(3)p:正方形的四条边相等;(4)p:已知a,b为实数,若x2+ax+b≤0有非空实解集,则a2-4b≥0。解:(1)ØP:若x>y,则5x≤5y;假命题 否命题:若x≤y,则5x≤5y;真命题(2)ØP:若x2+x﹤2,则x2-x≥2;真命题 否命题:若x2+x≥2,则x2-x≥2);假命题。 (3)ØP:存在一个四边形,尽管它是正方形,然而四条边中至少有两条边不相等;假命题。 否命题:若一个四边形不是正方形,则它的四条边不相等。假命题。(4)ØP:存在两个实数a,b,虽然满足x2+ax+b≤0有非空实解集,但使a2-4b﹤0。假命题。 否命题:
5、已知a,b为实数,若x2+ax+b≤0没有非空实解集,则a2-4b﹤0。真命题。评注:命题的否定与否命题是完全不同的概念。其理由:1.任何命题均有否定,无论是真命题还是假命题;而否命题仅针对命题“若P则q”提出来的。2.命题的否定(非)是原命题的矛盾命题,两者的真假性必然是一真一假,一假一真;而否命题与原命题可能是同真同假,也可能是一真一假。3.原命题“若P则q”的形式,它的非命题“若p,则Øq”;而它的否命题为“若┓p,则┓q”,既否定条件又否定结论。六、回顾反思在教学中,务必理清各类型命题形式结构、性质关系,才能真正准确地完整地表达出命题的否定,才能避犯逻辑性错误,才
6、能更好把逻辑知识负载于其它知识之上,达到培养和发展学生的逻辑思维能力。1.命题p:存在实数m,使方程x2+mx+1=0有实数根,则“非p”形式的命题是()A.存在实数m,使得方程x2+mx+1=0无实根;B.不存在实数m,使得方程x2+mx+1=0有实根;C.对任意的实数m,使得方程x2+mx+1=0有实根;D.至多有一个实数m,使得方程x2+mx+1=0有实根;2.有这样一段演绎推理是这样的“有些有理数是分数,整数是有理数,则整数是分数”结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误3.命题“"xÎR,x2-x+3>0”的否定是4
7、.“末位数字是0或5的整数能被5整除”的否定形式是否命题是5.写出下列命题的否定,并判断其真假:(1)p:"m∈R,方程x2+x-m=0必有实根;(2)q:$ÎR,使得x2+x+1≤0;6.写出下列命题的“非P”命题,并判断其真假:(1)若m>1,则方程x2-2x+m=0有实数根.(2)平方和为0的两个实数都为0.(3)若是锐角三角形,则的任何一个内角是锐角.(4)若abc=0,则a,b,c中至少有一为0.(5)若(x-1)(x-2)=0,则x≠1,x≠2.八、参考答案:1.B2.C3.$xÎR,x2-x+3≤04.否定形式:
此文档下载收益归作者所有