欢迎来到天天文库
浏览记录
ID:37182296
大小:87.50 KB
页数:6页
时间:2019-05-21
《多指标综合评价中指标正向化和无量纲化方法的选择》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、多指标综合评价中指标正向化和无量纲化方法的选择叶宗裕摘要:本文用实例说明了多指标综合评价中,用“倒数逆变换法”进行指标正向化时会完全改变原指标的分布规律,影响综合评价结果的准确性;对三种常用无量纲化方法——极差变换法、标准化法和均值化法的选择使用问题,用实例进行了比较分析。关键词:综合评价,正向化,无量纲化,标准化法,均值化法在多指标综合评价中,有些是指标值越大评价越好的指标,称为正向指标(也称效益型指标或望大型指标);有些是指标值越小评价越好的指标,称为逆向指标(也称成本型指标或望小型指标),还有些是指标值越接近某个值越好的指标,称为
2、适度指标。在综合评价时,首先必须将指标同趋势化,一般是将逆向指标和适度指标转化为正向指标,所以也称为指标的正向化。不同评价指标往往具有不同的量纲和量纲单位,直接将它们进行综合是不合适的,也没有实际意义。所以必须将指标值转化为无量纲的相对数。这种去掉指标量纲的过程,称为指标的无量纲化(也称同度量化),它是指标综合的前提。在多指标评价实践中,常将指标无量纲化以后的数值作为指标评价值,此时,无量纲化过程就是指标实际值转化为指标评价值(即效用函数值)的过程,无量纲化方法也就是指如何实现这种转化。从数学角度讲就是要确定指标评价值依赖于指标实际值的
3、一种函数关系式,即效用函数fj。因此,指标的无量纲化是综合评价的一项重要内容,对综合评价结果有重要影响。指标的正向化和无量纲化都有多种方法,应用时,应根据实际情况选择合适的方法,否则将会使综合评价的准确性受到影响。本章就如何选择正向化和无量纲化方法作些讨论。(一)关于指标正向化方法对于指标的正向化,在实际应用中许多学者常使用将指标取倒数的方法(苏为华教授称其为“倒数逆变换法”[1]),写成公式为:yij=C/xij(1)其中C为正常数,通常取C=1。很明显,用(1)式作为指标的正向化公式时,当原指标值xij.较大时,其值的变动引起变换后
4、指标值的变动较慢;而当原指标值较小时,其值的变动会引起变换后指标值的较快变动。特别是当原指标值接近0时,变换后指标值的变动会非常快,使得指标评价值的确定,也即指标的无量纲化变得困难。比如徐国祥等将指标资产负债率、流动比率、速动比率作为适度指标[2],对它们的正向化方法为(2)适度值k取各单位该指标值的平均值。这种取倒数的方法使得:一些接近k的指标值之间的差距扩大,而远离k的指标值之间的差距缩小,因而不能真实反映原指标的分布情况。笔者选取2001年全国各地区全部国有及规模以上非国有工业企业主要经济效益指标中的资产负债率为例(为节省篇幅选前
5、10个省市的值),用(2)式进行正向化变换,10个省市的资产负债率及其正向化值见表1。资产负债率的平均值k=58.59。表110省市资产负债率及其正向化值地区北京天津河北山西内蒙古辽宁吉林黑龙江上海江苏资产负债率(%)55.2958.2863.2563.7958.4458.6962.6359.0246.4660.03正向化值0.303.250.210.196.769.800.252.310.080.69资料来源:中国统计年鉴(2002).中国统计出版社,下同.由表1可见,天津与内蒙古的资产负债率原值为58.28和58.44,相差极小,而
6、变换后的值分别为3.25和6.76,相差很大;北京和上海的原值分别为55.29和46.46,相差很大,而变换后的值为0.30和0.08,相差很小。但另一方面,从资产负债率对经济效益的影响程度分析,当资产负债率在平均值附近时,其值的变动对经济效益的影响较小;当资产负债率远离平均值时,其值的变动对经济效益的影响较大。可见用这种取倒数的变换方法完全改变了原指标的分布规律,所得综合评价结果肯定是不准确的,因而是不可取的。笔者认为,应尽可能不使用这种倒数逆变换法,而使用“倒扣逆变换法”,即对逆向指标正向化公式为对适度指标正向化公式为这种线性变换不
7、会改变指标值的分布规律。但是,对周转速度类指标(包括库存商品周转速度、流动资金周转速度等等)通常有正向指标“次数”和逆向指标“天数”两种表现形式,二者存在互逆关系:.周转天数(天/次)=报告期日历长度(天)/报告期周转次数(次)显然,“次数”的增加能很好地表现实际价值的增加,“次数”是较好的评价指标,所以用倒数逆变换法将逆向指标“天数”变换为正向指标“次数”是较好的正向化方法。(二)指标无量纲化方法的选择目前人们已提出的无量纲化方法名称很多,如综合指数法、极差变换法、高中差变换法、低中差变换法、均值化法、标准化法、比重法、功效系数法、指
8、数型功效系数法、对数型功效系数法、正态化变换法等等。苏为华教授将它们归为四类:广义指数法、广义线性功效系数法、非线性函数法、分段函数法[1]。则广义指数法和广义线性功效系数法包含了前8种,都是线性无量纲化方
此文档下载收益归作者所有