《2.3.1直线与平面垂直》教学案例

《2.3.1直线与平面垂直》教学案例

ID:37181353

大小:141.00 KB

页数:6页

时间:2019-05-21

《2.3.1直线与平面垂直》教学案例_第1页
《2.3.1直线与平面垂直》教学案例_第2页
《2.3.1直线与平面垂直》教学案例_第3页
《2.3.1直线与平面垂直》教学案例_第4页
《2.3.1直线与平面垂直》教学案例_第5页
资源描述:

《《2.3.1直线与平面垂直》教学案例》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、.《线面垂直的判定》教学案例高三数学李慧一、教材分析:对直线与平面垂直的定义的研究遵循“直观感知、抽象概括”的认知过程展开,而对直线与平面垂直的判定的研究则遵循“直观感知、操作确认、归纳总结、初步运用”的认知过程展开,通过该内容的学习,能进一步培养学生空间想象能力,发展学生的合情推理能力和一定的推理论证能力,同时体会“平面化”思想和“降维”思想.教学重点:直观感知、操作确认,概括出直线与平面垂直的定义和判定定理.教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用.二、教学目标:目标:理解直线与平面垂直的意义,掌握直线与平面垂直的判定定理.能运用直线与平面垂直的判

2、定定理,证明与直线和平面垂直有关的简单命题:在平面内选择两条相交直线,证明它们与平面外的直线垂直.能运用直线与平面垂直定义证明两条直线垂直,即证明一条直线垂直于另一条直线所在的平面.三、教学过程:1.直观感知问题1:请同学们观察图片,说出旗杆与地面、大桥桥柱与水面是什么位置关系?你能举出一些类似的例子吗?    设计意图:从实际背景出发,直观感知直线和平面垂直的位置关系,使学生在头脑中产生直线与地面垂直的初步印象,为下一步的数学抽象做准备.师生活动:观察图片,引导学生举出更多直线与平面垂直的例子,如教室内直立的墙角线和地面位置关系,桌子腿与地面的位置关系,直立书的书脊与桌

3、面的位置关系等,由此引出课题.2.观察思考思考:如何定义一条直线与一个平面垂直呢?.. 我们已经学过直线和平面平行的判定和性质,知道直线和平面平行的问题可转化为考察直线和平面内直线平行的关系,直线和平面垂直的问题同样可以转化为考察一条直线和一个平面内直线的关系,然后加以解决.问题2:(1)如图1,在阳光下观察直立于地面旗杆AB及它在地面的影子BC,旗杆所在的直线与影子所在直线位置关系是什么?   (2)旗杆AB与地面上任意一条不过旗杆底部B的直线B1C1的位置关系又是什么? 设计意图:引导学生用“平面化”的思想来思考问题,通过观察,感知直线与平面垂直的本质属性.师生活动:

4、教师用多媒体课件演示旗杆在地面上的影子随着时间的变化而移动的过程,引导学生得出旗杆所在直线与地面内的直线都垂直.3.抽象概括问题3、通过上述观察分析,你认为应该如何定义一条直线与一个平面垂直?设计意图:让学生归纳、概括出直线与平面垂直的定义师生活动:学生思考作答,教师补充完善,指出定义中的“任意一条直线”与“所有直线”是同意词,定义是说这条直线和平面内所有直线垂直.同时给出线面垂直的记法与画法. 定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作:l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P

5、叫做垂足.画法:画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直,如图2.    4.辩析举例 辨析:下列命题是否正确,为什么? (1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直. (2)如果一条直线垂直一个平面,那么这条直线就垂直于这个平面内的任一直线...设计意图:通过问题辨析,加深概念的理解,掌握概念的本质属性.由(1)使学生明确定义中的“任意一条直线”是“所有直线”的意思,定义的实质就是直线与平面内所有直线都垂直.由(2)使学生明确,线面垂直的定义既是线面垂直的判定又是性质,线线垂直与线面垂直可以相互转化. 师生活动:命

6、题(1)判断中引导学生用铁丝表直线,用三角板两直角边表两垂直直线,桌面表平面举出反例.教师利用三角板和教鞭进行演示,将一块大直角三角板的一条直角边AC放在讲台上演示,这时另一条直角边BC就和讲台上的一条直线(即三角板与桌面的交线AC)垂直,但它不一定和讲台桌面垂直.在此基础上在讲台上放一根和AC平行的教鞭EF并平行移动,那么BC始终和EF垂直,但它不一定和讲台桌面垂直,最后教师用多媒体课件展示反例的直观图,如图3.由命题(2)给出下列常用命题:这个命题体现了平行关系与垂直关系的联系,它是判断线线垂直的常用方法.(二)探究发现直线与平面垂直的判定定理1.观察猜想思考:我们该

7、如何检验学校广场上的旗杆是否与地面垂直?虽然可以根据定义判定直线与平面垂直,但这种方法实际上难以实施.有没有比较方便可行的方法来判断直线和平面垂直呢?问题4、观察跨栏、简易木架等实物,你能猜想出判断一条直线与一个平面垂直的方法吗?  设计意图:通过问题思考与实例分析,寻找具有可操作性的判定方法,体验有限与无限之间的辩证关系.师生活动:引导学生观察思考,给出猜想:一条直线与一个平面内两相交直线都垂直,则该直线与此平面垂直.2.操作确认..问题5:如图4,请同学们拿出准备好的一块(任意)三角形的纸片,我们一起来做一个实验:过△AB

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。