欢迎来到天天文库
浏览记录
ID:37075346
大小:373.63 KB
页数:11页
时间:2019-05-16
《高中数学点直线平面之间的位置关系2.22.2.3直线与平面平行的性质2.2.4平面与平面平行的性质学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质目标定位 1.证明并掌握直线与平面平行、平面与平面平行的性质定理.2.能应用文字语言、符号语言、图形语言准确描述直线与平面平行,两平面平行的性质定理.3.能用两个性质定理,证明一些空间线面平行关系的简单问题.自主预习线面平行的性质定理面面平行的性质定理文字一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行如果两个平行平面同时和第三个平面相交,那么它们的交线平行符号⇒a∥b⇒a∥b图形作用线面平行⇒线线平行面面平行⇒线线平行即时自测
2、1.判断题(1)一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行.(√)(2)如果直线a∥平面α,直线b⊂α,则a与b平行.(×)(3)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(√)(4)过直线外一点,有且只有一个平面和已知直线平行.(×)提示 (2)a与b平行或异面.(4)过直线外一点可以作一条直线与已知直线平行,但过直线外一点可以作无数个平面与已知直线平行.2.如图所示,过正方体ABCD-A1B1C1D1的棱BB1作一平面交平面CDD1C1于EE1,则BB1与EE1的位置关系是(
3、 )A.平行B.相交C.异面D.不确定解析 BB1∥平面CDD1C1,平面BB1E1E∩平面CDD1C1=E1E,BB1⊂平面BB1E1E,由线面平行的性质定理知,BB1∥EE1.答案 A3.若平面α∥平面β,直线a⊂α,点B∈β,则在β内过点B的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行C.存在无数多条直线与a平行D.存在唯一一条直线与a平行解析 设点B与直线a确定一平面为γ,γ∩β=b,∴a∥b.答案 D4.已知直线l∥平面α,l⊂平面β,α∩β=m,则直线l,m的位置关系是_____
4、___.解析 由直线与平面平行的性质定理知l∥m.答案 平行类型一 线面平行性质定理的应用【例1】求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.解 已知直线a,l,平面α,β满足α∩β=l,a∥α,a∥β.求证:a∥l.证明:如图所示,过a作平面γ交平面α于b,∵a∥α,∴a∥b.同样过a作平面δ交平面β于c,∵a∥β,∴a∥c.则b∥c.又∵b⊄β,c⊂β,∴b∥β.又∵b⊂α,α∩β=l,∴b∥l.又∵a∥b,∴a∥l.规律方法 在空间平行关系中,交替使用线线平行、线面平行的判定定理与性
5、质定理是解决此类问题的关键.【训练1】若两个相交平面分别过两条平行直线,则它们的交线和这两条平行直线平行.解 已知:a∥b,a⊂α,b⊂β,α∩β=l.求证:a∥b∥l.证明:如图所示,∵a∥b,b⊂β,a⊄β,∴a∥β,又a⊂α,α∩β=l,∴a∥l,又a∥b,∴a∥b∥l.类型二 面面平行性质定理的应用【例2】已知AB、CD是夹在两个平行平面α、β之间的线段,M、N分别为AB、CD的中点,求证:MN∥平面α.证明 (1)若AB、CD在同一平面内,则平面ABDC与α、β的交线为BD、AC.∵α∥β,∴AC∥BD.
6、又M、N为AB、CD的中点,∴MN∥BD.又BD⊂平面α,MN⊄平面α,∴MN∥平面α.(2)若AB、CD异面,如图,过A作AE∥CD交α于E,取AE中点P,连接MP、PN、BE、ED.∵AE∥CD.∴AE、CD确定平面AEDC.则平面AEDC与α、β的交线分别为ED、AC,∵α∥β,∴ED∥AC.又P、N分别为AE、CD的中点,∴PN∥ED,又ED⊂平面α,PN⊄平面α,∴PN∥平面α.同理可证MP∥BE,又MP⊄平面α,BE⊂平面α,∴MP∥平面α,∵AB、CD异面,∴MP、NP相交.∴平面MPN∥平面α.又M
7、N⊂平面MPN,∴MN∥平面α.规律方法 1.利用面面平行的性质定理证明线线平行的关键是把要证明的直线看作是平面的交线,往往需要有三个平面,即有两平面平行,再构造第三个面与两平行平面都相交.2.面面平行⇒线线平行,体现了转化思想与判定定理的交替使用,可实现线线、线面及面面平行的相互转化.【训练2】如图,已知α∥β,点P是平面α、β外的一点(不在α与β之间),直线PB、PD分别与α、β相交于点A、B和C、D.(1)求证:AC∥BD;(2)已知PA=4cm,AB=5cm,PC=3cm,求PD的长.(1)证明 ∵PB∩P
8、D=P,∴直线PB和PD确定一个平面γ,则α∩γ=AC,β∩γ=BD.又α∥β,∴AC∥BD.(2)解 由(1)得AC∥BD,∴=,∴=,∴CD=(cm),∴PD=PC+CD=(cm).类型三 平行关系的综合应用(互动探究)【例3】如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于
此文档下载收益归作者所有